
REGULAR ARTICLE 

Analysis of a complex trait with missing data on the 
component traits 

Hans-Peter Piepho 1*, Bettina U. Müller 2, Constantin Jansen 2 

1 Bioistatistics Unit, Institute of Crop Science, University of Hohenheim, Fruwirthstrasse 23, 70599 Stuttgart, 
Germany. 
2 Strube Research GmbH & Co. KG, Hauptstraße 1, 38387 Söllingen, Germany. 
*Corresponding author: Hans-Peter Piepho; E-mail: piepho@uni-hohenheim.de 

CITATION: Piepho, H.P., Müller, B.U., Jansen, C. (2014). Analysis of a complex trait with 
missing data on the component traits. Communications in Biometry and Crop Science 9 (1), 26–40. 

Received: 24 July 2014, Accepted: 2 October 2014, Published online: 28 October 2014 
© CBCS 2014 

ABSTRACT 
Many complex agronomic traits are computed as the product of component traits. For the 
complex trait to be assessed in a field plot, each of the component traits needs to be measured 
in the same plot. When data on one or several component traits are missing, the complex trait 
cannot be computed. If the analysis is to be performed on data for the complex trait, plots 
with missing data on at least one of the component traits are discarded, even though data 
may be available on some of the component traits. This paper considers a multivariate mixed 
model approach that allows making use of all available data. The key idea is to employ a 
logarithmic transformation of the data in order to convert a product into a sum of the 
component traits. The approach is illustrated using a series of sunflower breeding trials. It is 
demonstrated that the multivariate approach allows making use of all available information 
in the case of missing data, including plots that may have data only on one of the component 
traits. 

Key Words: logarithmic transformation; log-normal distribution; multiplicative model; multi-trait 
analysis; multivariate mixed model; yield component analysis; yield components. 

 
 

INTRODUCTION 

Yield is a complex trait that can be expressed as the product of yield components (Fraser 
and Eaton 1983). For example, the complex trait ‘dry oil yield’ (DOY) in sunflower can be 
computed as the product of the yield components ‘oil content’ (OC) and ‘dry matter yield’ 
(DY). In the analysis of randomized field trials, DOY can be computed per plot and then 
subjected to univariate analysis of variance (ANOVA) by a suitable linear model.  

Quite frequently, data are missing on some plots for one of the two component traits 
(OC, DY), meaning that DOY cannot be computed for these plots, leading to missing data in 
the analysis for DOY. Most notably, it is good practice to check the data for approximate 
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normality and discard any outliers, which will routinely lead to missing values for some 
traits on some plots. Hence, incomplete data for component traits can occur in practice. If 
DOY data per plot are to be analysed, the available information on plots with missing data 
on one of the component traits is discarded. This suggests that a more efficient analysis 
would be possible if all available data could be analysed, including data on such plots where 
information on one of the component traits is missing. One option is to perform a bivariate 
analysis of the component traits and then derive the analysis for the composite trait DOY 
from that bivariate analysis. The advantage of this approach is that all available data can be 
utilized, including data from plots that have observations on only one of the component 
traits. While this idea is very appealing and may seem straightforward at first sight, it 
involves some challenges, because it is not immediately obvious how a joint model for the 
complex trait (DOY) and its components should be formulated. 

To illustrate the problem, consider an experiment laid out according to a randomized 

complete block design (RCBD). Analysis for each component traits c ( )Cc ...,2,1=  could be 

based on the model 

( ) ( ) ( ) ( ) ( )c

ij

c

j

c

i

cc

ij ebgx +++= µ  , (1) 

where ( )cµ  is an intercept, ( )c

ig  is the effect of the i-th genotype, ( )c

jb  is the effect of the j-th 

block, and ( )c

ije  is the ij-th plot error, which is usually assumed to have a normal distribution 

with constant variance. Under this model for the component traits (here: OC, 1=c ; DY, 

2=c ), the model for the response ijy  of the complex trait (DOY) could be derived by 

multiplication as 
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Resolving the right-hand side of (2) obviously leads to a model with several multiplicative 
terms, so the model implied for the complex trait DOY by the multiplicative relation in (2) is 
more complicated than model (1), which is assumed for the component traits OC and DY. 
For example, one of the emerging multiplicative terms is the product of the error terms of the 

two component traits ( )DY

ij

OC

ij ee × . This product clearly has a non-normal distribution if the 

two component error terms have a normal distribution. Moreover, the product in (2) 

involves cross products DY

j

OC

i bg  and OC

j

DY

i bg , which correspond to an interaction of the 

block and treatment factors. But model (1), which is routinely used for analysis also of the 
complex trait DOY, assumes normality of errors and absence of block-treatment interaction. 
So there is obviously a conflict of model assumptions, if the same type of linear model (eq. 1) 
is to be used for both the complex trait as well as for each of its component traits.  

In this paper we will show that a resolution of the conflict of model assumptions is 
forthcoming by simply conducting all analyses on the logarithmic scale (Piepho 1995, 
Gołaszewski 1996, Kozak 2004, Kozak and Mądry 2006). We discuss implications of this 
approach for the assumed distribution of traits on the original scale. The approach is 
illustrated using field trial data from a sunflower breeding programme. 

MATERIALS AND METHODS 

THE MODEL 

The complex trait Y  (DOY in our example) can be expressed as the product of its component 

traits ( ) ( )( ),..., 21
XX , i.e.,  

( ) ( ) ....21 ××= XXY  . (3) 
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By taking logarithms, the multiplicative model (3) is converted into an additive relation 
(Piepho 1995): 

( ) ( )( ) ( )( ) ...logloglog 21 ++= XXY  , (4) 

where ( )log  denotes the natural logarithm (i.e., logarithm with base equal to e = Euler’s 

constant; other bases can be used, but note that variance components will change by a 
common scaling factor). To keep the notation simple, we may express (4) as 

( ) ( ) ( )
∑

=

=++=
C

c

c
XXXY

1

21 ~
...

~~~
, (5) 

where ( )YY log
~

=  and ( ) ( )( )cc
XX log

~
=  ( )Cc ,...,2,1= . We assume a linear model to hold on 

the logarithmic scale. For illustration, consider the oil yield example given in the 
introduction, were we consider an experiment laid out according to an RCBD. The model for 
the c-th component trait can be written as 

( ) ( ) ( ) ( ) ( )c
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With this model for the component traits, the model for the complex trait (DOY) can be 
written in terms of sums (rather than products because we have moved to a logarithmic 
scale) as follows: 

ijjiij ebgy +++= µ~ ,  (7) 
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. It is seen that the 

model for the complex trait is of the same form as the model for the component traits, so the 
conflict described in the introduction is nicely resolved. This important property suggests 

that we can fit a multivariate linear model to the component trait vector ( ) ( )( )TXX ,...
~

,
~~ 21=X  

and then derive any inferences with respect to the complex trait from the multivariate model 
fitted to the component traits. In particular, it emerges that on the logarithmic scale the 
adjusted genotype mean for the complex trait can simply be computed as the sum of the 
corresponding adjusted genotype means for the component traits. The variance components 
of random effects can be similarly derived, as will be shown next. 

Continuing with the RCBD example, the multivariate model can be written as 

ijjiij ebgµx +++=~ , (8) 

where ( ) ( )( )Tijij xx ,...~,~~ 21=ijx , ( ) ( )( )T,..., 21 µµ=µ , ( ) ( )( )Tii gg ,..., 21=ig , ( ) ( )( )Tjj bb ,..., 21=jb  and 

( ) ( )( )T

ijij ee ,..., 21=ije . Now assume that genotype and error effects are multivariate normal, i.e., 

( )
gi Σ0g ,~ MVN  and ( )eij Σ0e ,~ MVN . Then the genetic and error variances of the complex 

trait (DOY) are given by 1Σ1 g

T=2

gσ  and 1Σ1 e

T=2

eσ , respectively, where 1 is a c-

dimensional column vector of ones. These ideas are readily extended to any other design and 
form of linear model. The key point is that on a logarithmic scale the complex trait is the 
simple sum of the component traits, so all inference for the complex trait as derived from the 
multivariate model for the component traits is essentially linear, which greatly simplifies the 
analysis compared to an analysis on the original scale. 

For a REML-based analysis of unbalanced data with missing values, it must be assumed 
that the missing data mechanism meets the missing-at-random (MAR) assumption (Piepho 
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and Möhring 2006). In the following, we compare univariate analyses for the complex trait 
DOY with various multivariate analyses. 

In summary, we are assuming an additive model for the yield components on the 
logarithmic scale. The response of complex trait is the sum of the responses of the component 
traits on the logarithmic scale. On the original scale, the model becomes multiplicative in the 
exponentiated effects from logarithmic scale. Thus, for emphasis of this property, we may 
simply refer to our model as the “multiplicative model”. 

IMPLEMENTATION OF THE MULTIPLICATIVE MODEL IN A MIXED MODEL PACKAGE 
To exemplify implementation of the multiplicative model in a linear model package, for 

simplicity we here consider the RCBD example with two traits. Extension to more complex 
settings is straightforward. For multivariate analysis, we assume that the data are arranged 
in the format illustrated in Table 1, where for an observational unit (plot) each trait is 
represented by a separate record. 
 
Table 1. Coding of variables§ for the first three plots in a dataset for experiment laid out as 
RCBD for two component traits oil content (OC; in %) and dry yield (DY; in t/ha). 

Blk Plt Gen Trait Y (response) 

1 1 8 OC 48.8 
1 1 8 DY 2.1 
1 2 3 OC 49.1 
1 2 3 DY 1.9 
1 3 17 OC 51.2 
1 3 17 DY 1.8 
. . . . . 
. . . . . 
. . . . . 

§: Blk = block, Plt = plot ID, Gen = genotype, Trait = trait. 
 
For a single trait, the model can be expressed as (Piepho et al. 2003) 

log(Y) = Blk : Gen + Plt  , (9) 

where the fixed block effect (Blk) appears before the colon and the random effects for 
genotype (Gen) and error (Plt) after the colon. The residual error term is underscored. Note 
that the symbolic representation of the model in (9) is entirely equivalent to the more 
standard representation in (6), where each effect, except for the intercept, has specific 
subscripts (Piepho et al. 2003). We use the symbolic form for further development for 
simplicity because this avoids having to write down many subscripts and because it is closer 
to the syntax required for implementation in a mixed model package. Note that there is no 
loss of information in the transition form the “usual” form to the symbolic form. 

The univariate model (9) may be extended to the multivariate case as 

log(Y) = Blk.Trait : Gen.Trait + Plt.Trait  . (10) 

In (10), we have used a notation that was suggested by Piepho et al. (2004) in the context of 
repeated measures designs. The situation here is analogous with traits corresponding to 
repeated measures. Thus, we boldfaced and italicised the random effect that would be fitted 
to a single trait, whereas the “repeated” factor Trait is only boldfaced. The former part of the 
effect identifies the “subject” on which repeated measurements, or measurements on 
multiple traits, are taken (Verbeke and Molenberghs 1997). This model is easily implemented 
in a mixed model package (Piepho and Möhring 2011). For example, the SAS code for model 
(10), assuming an unstructured variance-covariance model for both the error and the 
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genotypic effect, is given in Box 1. We here use the UNR structure, which models the 
variance-covariance matrix using the variances of the traits and the pairwise correlations. 
 
Box 1. SAS code for fitting the multivariate model (10). 

 

proc mixed; 

class blk plt gen trait; 

model log_y=blk*trait; 

random   trait / subject=gen type=unr; 

repeated trait / subject=plt type=unr; 

run; 

  

 
In order to compute adjusted means for genotypes, the genotype effect may be taken as 

fixed. It is then also convenient to introduce main effects for both blocks and genotypes, 
because this facilitates the computation of genotype means across traits, from which the 
corresponding sums can be obtained in a simple post-processing step explained below: 

log(Y) = Blk + Blk.Trait + Gen + Gen.Trait : Plt.Trait (11) 

This model may be fitted in SAS using the directives in Box 2. The adjusted mean of the 
genotypes for the complex trait is equal to the sum of the corresponding means for the 
component traits. This sum is equal to the genotype mean across traits under model (11), 
which is easily computed using the code in Box 2, multiplied by the number of traits.  
 
Box 2. SAS code for fitting the multivariate model (11) and computing genotype means 
across traits. 

 
proc mixed; 

class blk plt gen trait; 

model log_y=blk blk*trait gen gen*trait; 

repeated trait / subject=plt type=unr; 

lsmeans gen; 

run; 

  

 

BACK TO THE ORIGINAL SCALE 
For selection, means on the transformed logarithmic scale are sufficient, because back-

transformation to the original scale would not affect genotype ranking. For interpretation, 
however, one may be interested in mean estimates on the original scale. If means on the 
logarithmic scale are naïvely back-transformed by applying the exponential function, we 
obtain estimates of medians (Piepho 2009) under the multiplicative model, but not of the 
expected values on the original scale. For estimating the expected values, we may make use 

of properties of the log-normal distribution (Johnson et al., 1994). If µ  and 2σ  are the 

expected value and variance, respectively, of the response ( )ylog , then the expected value on 

the original scale is ( ) ( )2exp 2σµ +=yE , whereas the median equals ( ) ( )µexp=yMedian . 

To estimate the expected value on the original scale, we may simply plug in the adjusted 

genotype mean on the logarithmic scale for µ  and set 2σ  equal to the total variance of an 

observation on the logarithmic scale. Assuming a mixed model with simple random effects 
and constant variances, the total variance will be a constant for all observations. Note that 

( ) ( ) ( )yMedianyE ×= 2exp 2σ , meaning that for a constant total variance 2σ , and hence a 
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constant factor of proportionality ( )2exp 2σ , the expected value and the median are 

perfectly correlated. It emerges that, as far as the correlation and ranking of genotypes are 
concerned, no additional information is forthcoming by estimating the expected value rather 
than the median on the original scale. Thus, all analyses can be performed on the logarithmic 
scale. If a back-transformation is needed for ease of interpretation and descriptive purposes, 
it is sufficient to naïvely back-transform adjusted means for genotypes to yield median 
estimates on the original scale. 

APPROXIMATE NORMALITY ON THE ORIGINAL SCALE? 
It may be of interest to assess the degree to which the assumption of approximate 

normality on the original scale (that is usually made without any further ado) is 
commensurate with the assumption of normality on the logarithmic scale. Assuming 
normality on the logarithmic scale implies log-normality on the original scale. But when the 

variance on the logarithmic scale ( 2σ ) is small, the log-normal distribution on the original 

scale is close to normal. Specifically, the skewness is ( )[ ] ( ) 1exp2exp 22 −+ σσ  (Johnson et 

al., 1994). This equation can be used to assess the degree of departure from normality on the 
original scale under the assumed normal model on the logarithmic scale. 

THE DATASET 
We consider a sunflower experiment for evaluation of 25 hybrid cultivars and 5 checks 

carried out at three locations across southern and central Spain in the year 2013. The trial was 

designed as 5 × 6 row-column design of 30 entries with 5 checks. The number of replications 
was six for two locations (AR01, MO01) and three for location CB01. Locations with six and 
three replicates had 2-row and 4-row plots, respectively. Dry yield (DY) and oil content (OC) 
were directly measured from harvested seed of each plot. DY was corrected for moisture and 
OC was obtained employing NMR (nuclear magnetic resonance) spectroscopy on a 
subsample from each plot. The field trial AR01 was irrigated. The number of plots with data 
on both component traits or missing data on one or both traits (before residual analysis) is 
shown in Table 2. We inspected studentized residuals based on univariate analysis of the 
component traits and discarded any observation with an absolute residual greater than two. 
This threshold is rather stringent and it was chosen to generate further imbalance in the data. 
The corresponding numbers of observations are shown in brackets in Table 2. 
 
Table 2. Number of plots in each trial with data on both component traits, on only one trait, 
or on none of the component traits. In brackets: Number of plots after deleting observations 
with absolute studentized residual larger than two. 

 Trial (location) 

Traits present AR01 CB01 MO01 

OC & DY 175 (151) 90 (87) 170 (158) 
OC only 5 (16) 0 (1) 4 (12) 
DY only 0 (10) 0 (2) 0 (4) 
None 0 (3) 0 (0) 6 (6) 

OC = oil content; DY = dry yield. 
 
The factors used for analysis are shown in Table 3. 
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Table 3. Factors used for coding the mixed models for analysis of the sunflower data. 

Factor Description 

Gen Genotype 
Trl Trial (location) 
Rep Replicate within trial 
Row Row within replicate 
Col Column within replicate 
Trait Component trait; levels OC and DY 

 
The model for a single trait is: 

Y = Gen + Gen.Trl + Trl/Rep/(Row×Col)  
   = Gen + Trl : Gen.Trl + Trl.Rep + Trl.Rep.Row + Trl.Rep.Col +  
   + Trl.Rep.Row.Col (12) 

We take the trial main effect (Trl) as fixed because there are only three trials and inter-trial 
information is usually small (Piepho and Möhring 2006). For multiple traits, this is expanded 
as follows (Piepho et al. 2004, Piepho and Möhring 2011): 

Y = Gen + Trait + Gen.Trait + Trl + Trl.Trait : Gen.Trl.Trait  
   + Trl.Rep.Trait + Trl.Rep.Row.Trait + Trl.Rep.Col.Trait +  
           Trl.Rep.Row.Col.Trait (13) 

The SAS code for fitting the multi-trait model (13) is given in Box 3. The corresponding code 
for GenStat is given in Box 4 in the Appendix. 
 
Box 3. SAS code for fitting the multivariate model (13) to sunflower data and computing 
genotype means across traits. 

 
proc mixed; 

class trait trl rep row col gen; 

model log_Y=trait|gen trl trl*trait;  

random trait / subject=trl*rep type=unr; 

random trait / subject=trl*gen type=unr; 

random trait / subject=trl*rep*row type=unr; 

random trait / subject=trl*rep*col type=unr; 

repeated trait / subject=trl*rep*row*col type=unr; 

lsmeans gen / cov; 

run; 

 

 

TROUBLESHOOTING WHEN FITTING THE MULTIVARIATE MODEL 
Convergence problems are not uncommon with multivariate mixed models. We 

observed different behaviour of the three SAS procedures MIXED, GLIMMIX and HPMIXED 
and strong dependence of convergence behaviour on good starting values. The following 
three-stage strategy was found to work reasonably well using the MIXED procedure and the 
UNR structure: 
(1) Fit univariate models to the individual component traits. 
(2) Fit a multivariate model, fixing the trait-specific variance components at values obtained 
in stage (1). Thus, only the correlations are estimated at this stage. 
(3) Re-estimate all variance-covariance parameters (variances and correlations) of the 
multivariate model, using the estimates of variances from stage (1) and the correlation 
estimates from stage (2) as starting values. 



Piepho et  a l .  –  Ana lys is  of  a  complex trai t  w i th  miss ing data 

 

33

 
Another option is as follows: 
 

(1) Fit univariate models to the individual component traits ( ) ( )( ),....
~

,
~ 21 XX . 

(2) Fit a univariate model to pairwise sums of individual component traits. 
(3) Compute covariances (and correlations) between corresponding effects of component 
traits based on the fact that the equation 
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also holds for the individual random effects. 
(4) Use variances from (1) and covariances from (3) as starting values for multivariate 
analysis and re-estimate all variance-covariance parameters (variances and correlations). 
The first option was used in the example. 

RESULTS 

Residual plots before removal of outliers are shown in Figures 1, 2 and 3. Overall the 
logarithmic transformation as well as the original data yield reasonable residual plots. In the 
plots for DY and DOY there are a few observations that appear to be slightly outlying, both 
on the original scale and slightly more so on the logarithmic scale, but the overall impression 
of all of these plots is largely inconspicuous. Thus, an analysis on a logarithmic scale seems 
reasonable for most practical purposes. As explained before, for further analysis of data on 
the logarithmic scale we removed any observation that had an absolute studentized residual 
larger than two based on a univariate analysis for the component trait under consideration 

based on a fit of model (12) with fixed genotype main effect. 

RESIDUAL PLOTS FOR UNTRANSFORMED AND LOG-TRANSFORMED DATA 

 

(a)                                                                     (b) 

     
 
Figure 1. Conditional studentized residual plots for analysis of (a) oil content (OC) and (b) 
natural logarithm of OC. The plots are based on complete data. 
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(a)                                                                     (b) 

     
Figure 2. Conditional studentized residual plots for analysis of (a) kernel dry yield (DY) and 
(b) natural logarithm of DY. The plots are based on complete data. 
 

(a)                                                                     (b) 

     
 

Figure 3. Conditional studentized residual plots for analysis of (a) dry oil yield (DOY) and 
(b) natural logarithm of DOY. The plots are based on complete data. 
 

CORRELATIONS AMONG ADJUSTED MEANS 
We computed means for the complex trait using different models (bivariate and univariate) 
and data (all data and complete plots only) on both the logarithmic and the original scales. 
Overall, the correlations are quite high (Table 4). The lowest correlations occurred when 
means were computed from different data (all versus complete plots only). 
 



Piepho et  a l .  –  Ana lys is  of  a  complex trai t  w i th  miss ing data 

 

35

Table 4. Correlation (Pearson above diagonal, Spearman below diagonal) among genotype 
means for DOY obtained by different methods and models.  

 Biv_log_cp Biv_back_cp Biv_log_all Biv_back_all Uni_original 

Biv_log_cp 1 0.998 0.993 0.991 0.976 
Biv_back_cp 1 1 0.990 0.992 0.977 
Biv_log_all 0.984 0.984 1 0.998 0.970 
Biv_back_all 0.984 0.984 1 1 0.971 
Uni_original 0.965 0.965 0.949 0.949 1 

biv = bivariate analysis, log = log-transformed data, cp=complete-plot data, back = back-
transformed means, all = all data, including plots with missing data on one component trait, 
uni = univariate (original scale). 

HERITABILITY 
For all models, we computed the heritability using the ad hoc method of Piepho and Möhring 

(2007) as ( )dgg vH 5.0222 += σσ , where dv  is the average variance of a difference among 

adjusted genotype means. To estimate dv , the models were fitted taking the genotype main 

effect as fixed (Tables 5 and 6), whereas estimating the genotypic variance required taking 
this effect as random (Tables 7 and 8). We also estimated skewness on the original scale for 
models assuming normality on the log-scale. Univariate analyses of the component traits 
were used to obtain starting values for the bivariate analyses (Table 9). 
 
Table 5. Estimates of variance parameters for bivariate models (component traits, log-
transformed data) fitted to (i) complete plot data and all data. Genotype and trial main 
effects fixed. Var = variance, Corr = correlation. 

Covariance 
parameter 

Subject effect Variance parameter estimate 

Complete plots 
only 

All data 

Var(DY) Trial.Gen 0.0106 0.0108 
Var(OC) Trial.Gen 0.000195 0.000238 
Corr(DY,OC) Trial.Gen 0.377 0.389 
Var(DY) Trial.Rep 0.0255 0.0269 
Var(OC) Trial.Rep 0.000461 0.000441 
Corr(DY,OC) Trial.Rep 0.169 0.181 
Var(DY) Trial.Rep.Row 0.00127 0.000939 
Var(OC) Trial.Rep.Row 0.000108 0.000086 
Corr(DY,OC) Trial.Rep.Row 0.348 0.354 
Var(DY) Trial.Rep.Col 0.0138 0.0133 
Var(OC) Trial.Rep.Col 0.000144 0.000183 
Corr(DY,OC) Trial.Rep.Col 0.417 0.412 
Var(DY) Trial.Rep.Row.Col 0.0140 0.0146 
Var(OC) Trial.Rep.Row.Col 0.000409 0.000425 
Corr(DY,OC) Trial.Rep.Row.Col 0.134 0.136 
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Table 6. Variance components for random effects of DOY. Direct: Analysis of DOY or 
log(DOY) values per plot. Indirect: Derived from bivariate model. Genotype and trial main 
effects fixed. 

Effect/parameter DOY (direct) log(DOY) 
(direct) 

log(DOY) 
(indirect, complete 
plots only) 

log(DOY) 
(indirect, all 
plots) 

Trial.Gen 0.00533 0.0121 0.0118 0.0122 
Trial.Rep 0.00988 0.0270 0.0272 0.0286 
Trial.Rep.Row 0.000723 0.00163 0.00164 0.00123 
Trial.Rep.Col 0.00400 0.0151 0.0151 0.0147 
Trial.Rep.Row.Col 0.00680 0.0150 0.0151 0.0157 
Total variance  0.0709 0.0708 0.0724 
Skewness  0.833 0.832 0.843 

 
Table 7. Estimates of variance parameters for bivariate models (component traits, log-
transformed data) fitted to (i) complete plot data and (ii) all data. Trial main effects fixed. Var 
= variance, Corr = correlation. 

Covariance 
parameter 

Subject effect Variance parameter estimate 

Complete plots 
only 

All data 

Var(DY) Gen 0.00307 0.00318 
Var(OC) Gen 0.00226 0.00216 
Corr(DY,OC) Gen -0.0277 -0.114 
Var(DY) Trial.Gen 0.0111 0.0112 
Var(OC) Trial.Gen 0.000199 0.000241 
Corr(DY,OC) Trial.Gen 0.382 0.402 
Var(DY) Trial.Rep 0.0254 0.0269 
Var(OC) Trial.Rep 0.000461 0.000441 
Corr(DY,OC) Trial.Rep 0.170 0.180 
Var(DY) Trial.Rep.Row 0.00127 0.000883 
Var(OC) Trial.Rep.Row 0.000104 0.000083 
Corr(DY,OC) Trial.Rep.Row 0.327 0.311 
Var(DY) Trial.Rep.Col 0.0135 0.0130 
Var(OC) Trial.Rep.Col 0.000144 0.000182 
Corr(DY,OC) Trial.Rep.Col 0.407 0.405 
Var(DY) Trial.Rep.Row.Col 0.0140 0.0146 
Var(OC) Trial.Rep.Row.Col 0.000411 0.000426 
Corr(DY,OC) Trial.Rep.Row.Col 0.138 0.143 

 
Implied skewness on the original scale was moderate for all analyses (Tables 6 and 8). 

The numerical differences in heritability should not be over-interpreted because of the very 
small number of genotypes. To gain some insight with this dataset, we fixed variance-
covariance parameters at values obtained from an analysis of all data, taking the genotype 
main effect as random (Table 7). These fixed values were then used to estimate heritability 
based on bivariate analyses of all data and based on complete plots only (Table 10). As 
expected, heritability is slightly larger when all data are used, as opposed to using data only 
from plots with complete data on both component traits (Table 1). The difference in 
heritability is not dramatic, but the result does show that some improvement is possible by 
analysing all available data. 
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Table 8. Variance components for random effects of DOY. Direct: Analysis of DOY or 
log(DOY) values per plot. Indirect: Derived from bivariate model. Trial main effects fixed. 

Effect/parameter DOY (direct) log(DOY) 
(direct) 

Log(DOY) 
(indirect, 
complete 
plots only) 

Log(DOY) 
(indirect, all 
data) 

Gen 0.00215 0.00516 0.00518 0.00474 
Trial.Gen 0.00530 0.0125 0.0124 0.0128 
Trial.Rep 0.00989 0.0270 0.0270 0.0286 
Trial.Rep.Row 0.000705 0.00161 0.00162 0.00114 
Trial.Rep.Col 0.00389 0.0150 0.0147 0.0144 
Trial.Rep.Row.Col 0.00685 0.0150 0.0151 0.0158 
Total variance 0.0288 0.0763 0.0760 0.0774 
Skewness - 0.867 0.865 0.874 
Heritability (ad hoc) 0.459 0.473 0.479 0.454 

 
Table 9. Variance components for random effects of log(OC) and log(DY) based on univariate 
analyses. Trial main effects fixed. Genotype main effect fixed or random. 

Effect/parameter 

 

log(OC) log(DY) 

Gen fixed Gen random Gen fixed Gen random 

Gen  0.00218  0.00328 
Trial.Gen 0.000236 0.000239 0.0105 0.0109 
Trial.Rep 0.000449 0.000448 0.0266 0.0266 
Trial.Rep.Row 0.000087 0.000085 0.00100 0.000974 
Trial.Rep.Col 0.000173 0.000173 0.0133 0.0131 
Trial.Rep.Row.Col 0.000429 0.000429 0.0145 0.0146 

 

Table 10. Heritability ( 2H ) and mean variance of a difference ( dv ) for DOY based on 

bivariate analysis of log(DY) and log(OC) using variance parameter estimates obtained from 
fit of all data. Comparison of the results when complete plots only are used versus use of all 
data. 

Effect/parameter Complete plots only All data 

Genetic variance 0.00474 0.00474 
Mean variance of a difference 0.0120 0.0118 
Heritability (ad hoc) 0.441 0.446 

DISCUSSION 

This paper has shown, using a real example, that fitting a multivariate linear mixed 
model to the component traits (e.g. dry matter yield and oil content) on the logarithmic scale 
allows making full use of all the information on the complex trait (e.g. dry oil yield) when 
some of the data on the component traits are missing. 

The complex trait is an exact product of the component traits. For clarity, it is worth 
pointing out that under our multiplicative model there is no independent error associated 
with the complex trait in the sense that all error terms in this model stem from the errors of 
the component traits. 

In this paper we have focussed on the case of a complex trait that is computed from 
component traits. However, there are also applications, where a component trait is computed 
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from a complex trait and one or several component traits. For example, kernel weight in 

cereals ( )( )1X  is often calculated based on grain yield per unit area ( )Y , number of spikes per 

unit area ( )( )2X , and number of kernels per spike ( )( )3X  as ( ) ( ) ( )( )321 XXYX = . With minor 

modifications, the multivariate approach proposed in this paper is also applicable in this 
scenario. For the example of kernel weight, we would fit a multivariate mixed model to 

( ) ( ) ( )( ) ( ) ( )( )( )3322 log
~

,log
~

,log
~

XXXXYY ===  and then make inferences on kernel weight on 

the log scale based on ( ) ( )( ) ( ) ( )3211 ~~~
log

~
XXYXX −−== .  

In implementing our mixed models, we have favoured REML over competing methods. 
REML has become the standard method for fitting mixed models because this method has 
several desirable properties. For example, variance component estimates tend to be less 
biased than full ML estimates, and REML estimates are consistent (as are ML estimates) 
(Searle et al. 1992). 

One might be inclined to analyse each component trait separately, computing genotype 
means for each trait, and then estimating the mean of the complex trait simply by 
multiplying the corresponding genotype means of the component traits. But this analysis is 
bound to produce biased results when the component traits are correlated. It is also in 
disagreement with our multiplicative model. To see this, consider the two component trait 

values ( )1X  and ( )2X . We are interested in estimating the “mean” of the product of the 

component trait values, ( ) ( )21 XXY ×= , i.e., the expected value ( ) ( ) ( )( )21 XXEYE = . From the 

definition of a covariance (Rice 1995), we have 

( ) ( )( ) ( )( ) ( )( ) ( ) ( )( )212121 , XXCOVXEXEXXE += , (14) 

where ( ) ( )( )21 , XXCOV  denotes the covariance of ( )1X  and ( )2X . So obviously, the simple 

plug-in approach produces a bias when ( ) ( )( ) 0, 21 ≠XXCOV , which will be the rule rather 

than the exception in yield component analysis (Fraser and Eeaton 1983, Piepho 1995, 
Spaarnaij and Bos 1993, also see Tables 5 and 7). 

Analysing yield data on a logarithmic scale is not uncommon. One prominent example is 
the seminal paper by Finlay and Wilkinson (1963), who performed their proposed regression 
for stability assessment in order to stabilize the variance and better meet the assumption of 
linearity. Also, many breeders compute relative yields compared to check varieties in order 
to analyse their trials (Piepho 1994, Yau and Hamblin 1994, Schwarzbach et al. 2007). Use of 
relative yields also implies a multiplicative model for original yields, rather than an additive 
model. Limpert et al. (2001) provide a very lucid review of diverse examples from biology in 
which data more closely follow a log-normal rather than a normal distribution. Francis 
Galton (cited in Lynch and Walsh 1998, p.295) was the first to point out that taking 
logarithms is expected to achieve approximate normality for traits that can be written as 
products of component traits (see eq. 3), due to the resulting transformation to an additive 
relation (eq. 4) and operation of the central limit theorem, and he put this fact forward to 
explain the commonness of the log-normal distribution. It should also be noted, however, 
that the log-normal distribution approaches a normal distribution when the variance on the 
logarithmic scale becomes small, so both distributional assumptions may hold 
approximately for a given dataset. For yield component analysis, working on the logarithmic 
scale as shown here is mainly a matter of convenience because the analysis can proceed by 
linear inference as opposed to the more complex analysis based on the multiplicative model 
that holds on the original scale (Brown and Alexander 1991). 

We also mention here that analysis of yield components on a logarithmic scale bears 
some resemblance to compositional data analysis (Aitchison 1986, Pawlowsky-Glahn and 
Buccianti 2011). Compositional data arise when the total quantity of some trait is 
decomposed into its components. For example, soil samples may be decomposed into 
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components defined by particle size, i.e., clay, silt and sand fractions. If these components are 
expressed as fractions of the total, the data are referred to as compositional. Yield 
components on the logarithmic scale could be regarded as compositional data if expressed as 
a fraction of the total, corresponding to logarithmic yield. As yet, there does not seem to be a 
published application of methods for compositional data to yield components. For a detailed 
discussion of the relation between yield component analysis and compositional data (i.e., 
composite variables or composite scores) see Kozak (2010). 

For the analysis by a multiplicative model as proposed here it is crucial that all 
component traits are assessed at the plot level. It may also be mentioned that dry matter 
yield itself is computed as the product of fresh matter yield and dry matter content. 
Sometimes, for the sake of simplicity, dry matter content is computed from a pooled sample 
that comprises samples from different plots. Subsequently, dry matter yield for each plot is 
computed as the product of fresh matter yield from the plot and the dry matter content value 
obtained from the pooled sample. It is important to note, however, that the dry matter 
measurement for the pooled sample does not capture the between-plot variance for dry 
matter content and hence a valid statistical analysis based on plot dry matter yield data 
computed this way is not possible. 
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APPENDIX 

The GenStat code for fitting the multi-trait model (13) is given in Box 4. In difference to SAS, 
GenStat requires the data for different traits from the same plot to be in a single record. A 
further difference is that as a default, GenStat uses a product-type parameterization of the 
variance-covariance structure, which factors out a single residual variance component. 
Hence, all parameter estimates are, in fact, ratios of a variance component relative to that 
residual. Multiplying these ratios (called “gammas”) by the residual (called “Sigma2”) 
produces the variance and covariance estimates corresponding to those obtained with SAS. 
There is also an option in the REML directive to switch to the covariance parameterization 
(referred to as “sigmas”). 
 
Box 4. Genstat code for fitting the multivariate model (13) to sunflower data and computing 
genotype means across traits. 

 

VCOMP [FIXED=%_variable/(%_Gen + %_Trl); FACTORIAL=9;  

CONST=omit] (%_Trl.%_Gen + %_Trl.%_Rep + %_Trl.%_Rep.%_Row + 

%_Trl.%_Rep.%_Col).%_variable + %_units.%_variable; 

 

VSTRUCTURE [%_Trl.%_Gen.%_variable] FACTOR=%_variable; MODEL=unstructured;  

VSTRUCTURE [%_Trl.%_Rep.%_variable] FACTOR=%_variable; MODEL=unstructured; 

VSTRUCTURE [%_Trl.%_Rep.%_Row.%_variable; MODEL= unstructured; 

VSTRUCTURE [%_Trl.%_Rep.%_Col.%_variable] FACTOR=%_variable; MODEL= 

unstructured; 

VSTRUCTURE [%_units.%_variable] FACTOR=%_variable; MODEL=unstructured;  

REML [PRINT=model,components,waldTests, means; MAXCYCLE=20; 

FMETHOD=automatic; PSE=differences; MVINCLUDE=explanatory,yvariate; 

METHOD=Fisher] _Data; 

 

 

 

 


