
SOFTWARE TRICKS AND TIPS 

An R function for imputation of missing cells in two-way 
data sets by EM-AMMI algorithm 

Jakub Paderewski 

Department of Experimental Design and Bioinformatics, Warsaw University of Life Sciences – SGGW, 
Nowoursynowska 159, 02-776 Warsaw, Poland. 
Jakub Paderewski; E-mail: j.paderewski@omega.sggw.waw.pl 

CITATION: Paderewski, J. (2013). An R function for imputation of missing cells in two-way 
data sets by EM-AMMI algorithm. Communications in Biometry and Crop Science 8 (2), 60–69. 

Received: 23 April 2014, Accepted: 26 May 2014, Published online: 11 June 2014 
© CBCS 2014 

ABSTRACT 

Various statistical methods for two-way classification data sets (including AMMI or GGE analyses, used 
in crop science for interpreting genotype-by-environment interaction) require the data to be complete, 
that is, not to have missing cells. If there are such, however, one might impute the missing cells. The paper 
offers R code for imputing missing values by the EM-AMMI algorithm. In addition, a function to check 
the repeatability of this algorithm is proposed. This function could be used to evaluate if the missing data 
were imputed reliably (unambiguously), which is important especially for small data sets. 

Key Words: agricultural trials; EM-AMMI; missing cells; multivariate statistics; Singular Value 
Decomposition; software. 

INTRODUCTION 

Multivariate data are very common in crop science. One of the most common scenarios is 
a two-way classification, an example being yield of genotypes (G) grown in a number of 
environments (E). In such trials, genotype-by-environment (GE) interaction is often of 
interest. The GE classification data can be analyzed by AMMI analysis (Gauch, 1992), which 
is based upon the following model: 
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y  is the mean value of a trait from n replications for the combination of the ith 

(i=1,..,I) genotype with the jth (j=1,..,J) environment, m is the grand mean, gi is the main effect 
of the ith genotype, ej is the main effect of the jth environment and 
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value decomposition (SVD) of the matrix of interactions effects. The λt is the singular value 
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for the tth principal component in non-ascending order (
T1 λλ ≥≥ K

). The eigenvector ut 

(ut1, ... , utI) corresponding to eigenvalue 2

tλ  contains the genotypic parameters of the tth 

(t=1,..,T) interaction principal component, while the eigenvector vt (vt1, ... , vtJ) corresponding 

to eigenvalue 2

tλ  contains the environmental parameters of the tth (t=1,..,T) interaction 

principal component. 
The AMMI model is considered when the respective values in rows (in the GE 

classification, values in rows commonly correspond to genotypes yields) of the data set are 
associated (Jackson, 1993) with some other rows. An example is when there are genotypes 
with a similar response to environmental conditions. Symmetrically, the values in columns 
(representing environments) should be linked with respective values in some other columns. 
In the GE classification this scenario represents a situation in which the respective 
environments influence yield in a similar way. The appropriate number of principal 
components can be found by (i) FR test (Cornelius, 1993); (ii) the minimum of the Root Mean 
Square Predictive Difference (RMSPD, Gauch and Zobel, 1990; Dias and Krzanowski, 2003); 
or (iii) some heuristics methods (Jackson, 1993) developed in the nScree function from 
nFactors package (Raiche, 2010) 

As a graphical data analysis tool, biplot analysis (based on the SVD procedure) is useful 
to make interpretation of interaction effects, for example genotype-by-environment 
interaction of crop yield. The limitation of some methods that are used to analyze agronomy 
trials, for example PCA, GGE and AMMI (Gauch, 1992; Yan and Kang, 2003; Kaya et al., 
2006; Paderewski et al., 2011) analysis (all of which base on the SVD procedure), is that they 
require a complete two-way table. This not being the case, a possible solution is extracting 
from the whole data set a balanced subset by deleting the columns (environments) with 
missing values for some of the genotypes and/or rows (genotypes) with missing values for 
some of the environments. An obvious disadvantage of this solution is that it removes all the 
information about the removed items (genotypes or environments) from the analysis and 
subsequent interpretation. Alternatively, one can fill in (estimate) the missing values in the 
data set and conduct the analysis for such an imputed data set. This paper offers an R code 

that will help users to impute the missing cells for two-way data by the Expectation-

Maximization AMMI (EM-AMMI) algorithm.  
Imputation of missing data by EM-AMMI can also be helpful to rank genotypes based on 

their yielding in a particular environment (location) or in a subset of environments (in a so-
called mega-environment). Similarly, genotypes can be ranked in multi-year trials even if the 
genotypes did not occur in all years of the trial, thereby making the trial unbalanced. Such a 
scenario is actually often the case because inferior genotypes are dropped and new ones are 
added each year. 

In replicated trials it is possible that all values for some GE combinations are missing. 
The EM-AMMI algorithm (Gauch and Zobel, 1990; Gauch, 1992, 2007) can be used to impute 
these values. This paper presents the EM.AMMI function in R language (R Development 
Core Team, 2013) to fill in the missing values. The function can be easily used, especially 
before the AMMI or GGE (Genotype and Genotype by Environment interaction method, Yan 
and Kang, 2003) analysis will be used. R enables one to conduct the AMMI analysis (Onofri 
and Ciriciofolo, 2007; agricolae package, de Mendiburu 2012). The author of this paper is 
not aware of any R functions or add-on packages with the EM-AMMI procedure.  

Thus, the aim of this paper is to present an R function that enables one to use the EM-
AMMI procedure to impute missing cells in data from genotype-by-environment trials.  
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EM-AMMI 

The EM-AMMI method completes a data set with missing values according to both main 
and interaction effects. The algorithm works as follows (Gauch and Zobel, 1990; Gauch, 
1992): 

1. The user can provide initial values for the missing cells (as the argument of the EM-

AMMI function). Otherwise, the initial values are calculated as the grand mean 
increased by main effects of rows and main effects of columns. That way, the matrix of 
observations is pre-filled in. 
2. The parameters of the AMMI model are estimated. 
3. The adjusted means are calculated based on the AMMI model with n principal 
components. 
4. The missing cells are filled with the adjusted means. 
5. If the maximum change in these values (the Chebyshev distance between the 
missing value estimations in the two successive iteration steps) is greater than the 
assumed precision, the steps 2 through 5 are repeated. Otherwise, the algorithm stops. 
 

EM.AMMI() function  
The EM.AMMI() function fills in missing cells in a two-way table according to the EM-

AMMI method. Its results are reliable when there are relationships between genotype yields 
and between environments. The user should decide on the number of principal components 
(T in the equation of the AMMI model [1]) used to estimate the missing values.  

 

Usage: 
EM.AMMI(X, PC.nb=NA, initial.values=NA, precision=0.01, max.iter=1000, 

change.factor=1, simplified.model=FALSE) 

 

Arguments: 

X – the matrix of observed values with NA value in missing cells; the data set could 
represent the averages for the two-way genotype-by-environment classification, that is, the 
two-way table of genotype means in each environment; 
PC.nb – (optional) the number of principal components in the AMMI model that will be 
used; the default value is 1. For PC.nb=0 only main effects are used to estimate cells in the 
data table (the interaction is ignored). The number of principal components must not be 
greater than min(number of rows in the X table, number of columns in the X table)–2. The 
number of principal components can be found according to the minimum of the Root Mean 
Square Predictive Difference (RMSPD, Gauch and Zobel, 1990; Dias and Krzanowski, 2003) 
or some heuristic indexes (Jackson, 1993). 
initial.values – (optional) the initial values of the missing cells. It can be a single value, 
which then will be used for all empty cells, or a vector of length equal to the number of 
missing cells (starting from the missing values in the first column). If omitted, the initial 
values will be obtained by the main effects from the corresponding model, that is, by the 
grand mean of the observed data increased (or decreased) by row and column main effects. 
precision – (optional) the algorithm converges if the maximal change in the values of the 
missing cells in two subsequent steps is not greater than this value (the default is 0.01);   
max.iter – (optional) a maximum permissible number of iterations (that is, number of 

repeats of the algorithm’s steps 2 through 5); the default value is 1000;  
change.factor – (optional) introduced by analogy to step size in gradient descent method, 
this parameter that can shorten the time of executing the algorithm by decreasing the 
number of iterations. The change.factor=1 (default) defines that the previous 
approximation is changed with the new values of missing cells (standard EM-AMMI 
algorithm). However, when change.factor<1, then the new approximations are computed 
and the values of missing cells are changed in the direction of this new approximation but 
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the change is smaller. It could be useful if the changes are cyclic and thus convergence could 
not be reached. Usually, this argument should not affect the final outcome (that is, the 

imputed values) as compared to the default value of change.factor=1. 

simplified.model – the AMMI model contains the general mean, effects of rows, columns 
and interaction terms. So the EM-AMMI algorithm in step 2 calculates the current effects of 
rows and columns; these effects change from iteration to iteration because the empty (at the 
outset) cells in each iteration are filled with different values. In step 3 EM-AMMI uses those 

effects to re-estimate cells marked as missed (as default, simplified.model=FALSE). It is, 
however, possible that this procedure will not converge. Thus the user is offered a simplified 
EM-AMMI procedure that calculates the general mean and effects of rows and columns only 
in the first iteration and in next iterations uses these values (simplified.model=TRUE). In 
this simplified procedure the initial values affect the outcome (whilst EM-AMMI results 
usually do not depend on initial values). For the simplified procedure the number of 
iterations to convergence is usually smaller and, furthermore, convergence will be reached 
even in some cases where the regular procedure fails. If the regular procedure does not 
converge for the standard initial values (see the description of the argument 
initial.values), the simplified model can be used to determine a better set of initial 
values. 
 
Value: The outcome of the function, provided as a list:  

1) X: the imputed matrix (filled in with the missing values estimated by the EM-AMMI 
procedure);  
2) PC.SS: the sum of squares representing variation explained by the principal components 
(the squares of eigenvalues of singular value decomposition);  
3) iteration: the final number of iterations;  
4) precision.final: the maximum change of the estimated values for missing cells in the 
last step of iteration (the precision of convergence). If the algorithm converged, this value is 

slightly smaller than the argument precision;  

5) PC.nb.final: a number of principal components that were eventually used by the 
EM.AMMI() function. The function checks if there are too many missing cells to 
unambiguously compute the parameters by the SVD decomposition (Gauch and Zobel, 
1990). In that case the final number of principal components used is smaller than that which 

was passed on to the function through the argument PC.nb;  

6) convergence: the value TRUE means that the algorithm converged in the last iteration.  

 

Description of repeat.EM.AMMI()  
Aiming to check if the outcome of the EM.AMMI() function is reliable, the function 
repeat.EM.AMMI() repeats the EM-AMMI procedure Nb times, each time with a different 
initial values. The reliability of the imputed values  tends to be higher for larger data sets 
(Leek, 2011), stronger relationships between rows, stronger relationships between columns, 
and fewer missing values to be imputed.  
 
Usage: 
repeat.EM.AMMI(X, Nb, PC.nb=NA, precision=0.01, max.iter=1000, 

simplified.model=FALSE) 
 
Arguments: 

X, max.iter, simplified.model, precision – the same as in the EM.AMMI() function; 
PC.nb – a vector of number of principal components that will be used to compute the EM-
AMMI algorithm; 
Nb – a number of repetitions of the EM-AMMI algorithm with the same number of principal 

components. 
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Value: The outcome of the function repeat.EM.AMMI() is a list with two 3-way arrays. The 

first 3-way array (named ‘estimated’) contains the imputed values of the missing cells. The 

second array (named ‘parameters’) contains the parameters that describe the run of 

EM.AMMI procedure, such as sum of squares for the principal components (‘PC SS’), 
number of iterations used by the EM.AMMI procedure (‘Iterations nb’), and the final 
precision (in the last step of iteration) (‘precision.final’). The first dimension of both 3-
way arrays is associated with the index of repetition (the indices in this dimension are from 1 
to Nb). The first repetition is initialized by the main effects and the subsequent ones are 
initialized by random variables obtained by random sampling from a normal distribution 
with mean and standard deviation equal to the mean and standard deviation of all the 
observed values in the original data set X. The second dimension of the array ‘estimated’ is 
related to individual missing cells. The array contains the set of the imputed values so the 
maximum index in this dimension is the number of missing values. The second dimension of 
the array ‘parameters’ contains: the sums of squares of the principal components, the 
number of iterations, and the obtained precision. The third dimension is associated with the 

number of principal components. The maximum index is the length of vector PC.nb, that is, 
the number of the different EM-AMMI models fitted (each model being fit with a different 
number of principal components). 

 

Description of CV.LOO() 
To select the appropriate number of principal component, Root Mean Square Predictive 

Difference (RMSPD) can be used (Gauch and Zobel, 1990; Dias and Krzanowski, 2003). The 
optimal number of principal components is that which has the smallest RMSPD value. To 
decide on this optimal number, the leave-one-out cross-validation procedure can be 
employed. Shortly, from the original data set a single observation is hidden before running 
the EM-AMMI; it will be used as the validation data set. The imputation is done by the EM-
AMMI procedure based on the training data set, which is the data set without this single 

observation and without all the originally missing values. Such a procedure is repeated for 
each observation in the sample (so the procedure is repeated as many times as there are non-
empty cells in the data set). The differences between the hidden value and that which is 
imputed by EM-AMMI (the ‘predictive differences’) are squared, averaged, and square-
rooted. 
 
Usage: 
CV.LOO<-function(X,...,PC.nb=0:2,MNO=3) 
 
Arguments: 

X, … – the arguments passed to the EM.AMMI() function; 
PC.nb – a vector of numbers of principal components that will be used to run the EM-AMMI 
procedure; 
MNO – a permissible minimum number of observed values in each row and each column of X 
matrix. If the training data set has fewer values in any of the rows or column than MNO, then 
such a training data set and the corresponding validation set will not be used for validation 
purposes. 
Value: The outcome of the function CV.LOO() is a list with (i) RMSPD values (RMSPD) and (ii) 
the predictive differences table (differences). 
 
Functions in R 
EM.AMMI<-function(X, PC.nb=1, initial.values=NA, precision=0.01, 

max.iter=1000, change.factor=1, simplified.model=FALSE) 

{ 
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  X<-as.matrix(X) 

  X.missing<-matrix(1,nrow(X),ncol(X)) 

  X.missing[is.na(X)]<-0 

  max.IPC=min(c(rowSums(X.missing),colSums(X.missing)))-1 

  if (max.IPC<PC.nb)  

    {PC.nb.used<-max.IPC} else {PC.nb.used<-PC.nb} 

  X.ini<-X 

  if (length(initial.values)==1) 

  {  

    if (!is.na(initial.values)) 

    {   

      initial.values<-matrix(initial.values,nrow(X),ncol(X))  

      X.ini[is.na(X.ini)]<-initial.values[is.na(X)] 

    } else { 

      X.mean<-mean(c(X),na.rm = TRUE) 

      row.m<-matrix(rowMeans(X,na.rm = TRUE),nrow(X),ncol(X)) 

      col.m<-t(matrix(colMeans(X,na.rm = TRUE),ncol(X),nrow(X))) 

      estimated<-(-X.mean)+row.m+col.m 

      X.ini[is.na(X.ini)]<-estimated[is.na(X)] 

    } 

  } else { 

    X.ini[is.na(X.ini)]<-initial.values[is.na(X)] 

  } 

  iteration<-1 

  X.new<-X.ini 

  change<-precision+1 

  while ((change>precision)&(iteration<max.iter)) 

  { 

    if (iteration==1 | !simplified.model) 

    { 

      x.mean<-mean(X.new) 

      X.new.Ie<-X.new-x.mean 

      X.new.Ie<-scale(X.new.Ie,center = TRUE, scale = FALSE) 

      x.col.center<-attr(X.new.Ie,"scaled:center") 

      X.new.Ie<-t(scale(t(X.new.Ie),center = TRUE, scale = FALSE)) 

      x.row.center<-attr(X.new.Ie,"scaled:center") 

    } else { X.new.Ie<-X.new-x.mean-row.eff-col.eff } 

    if (PC.nb.used>=1) 

    { 

      SVD <- La.svd(X.new.Ie) 

      SVD$d<-SVD$d[1:PC.nb.used] 

      SVD$u<-SVD$u[,1:PC.nb.used] 

      SVD$v<-SVD$v[1:PC.nb.used,] 

      diag.l<-diag(SVD$d,nrow=PC.nb.used) 

      interaction.adj<-SVD$u%*%diag.l%*%SVD$v 

    } else interaction.adj<-0 

    if (iteration==1 | !simplified.model) 

    { 

      row.eff<-matrix(x.row.center,nrow(X),ncol(X)) 

      col.eff<-t(matrix(x.col.center,ncol(X),nrow(X))) 

    } 

    X.next<-X.new 

    X.next[is.na(X)]<-(x.mean+row.eff+col.eff+interaction.adj)[is.na(X)] 

    change<-max(abs(c( (X.next-X.new)[is.na(X)] ))) 

    iteration<-iteration+1 

    X.new<-change.factor*X.next+(1-change.factor)*X.new 

  } 

  if (change<=precision) {state=TRUE} else {state=FALSE} 

  if (PC.nb.used<PC.nb) {state=FALSE} 

  if (PC.nb.used==0) {SVD<-list(d=0)} 

return(list(X=X.new,PC.SS=SVD$d^2,iteration=iteration,precision.final=chang

e,PC.nb.final=PC.nb.used, convergence=state)) 

} 
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repeat.EM.AMMI<-function(X, Nb, PC.nb=NA, precision=0.01, max.iter=1000, 

simplified.model=FALSE) 

{ 

  Y<-array(NA,c(Nb,sum(is.na(X)),length(PC.nb))) 

  Y2<-array(NA,c(Nb,3,length(PC.nb))) 

  dimnames(Y)[[3]]<-c(PC.nb,rep(NA,dim(Y)[3]-length(PC.nb))) 

  dimnames(Y2)[[3]]<-c(PC.nb,rep(NA,dim(Y)[3]-length(PC.nb))) 

  dimnames(Y2)[[2]]<-c("PC SS","Iterations nb","precision.final") 

  PCn<-1 

  while (PCn<=length(PC.nb)) 

  { 

    temp<-EM.AMMI(X, PC.nb[PCn], initial.values=NA, precision, 

max.iter=max.iter, simplified.model= simplified.model) 

    if (temp$PC.nb.final==PC.nb[PCn]) 

    { 

      Y[1,,PCn]<-temp$X[is.na(X)] 

      Y2[1,,PCn]<-c(sum(temp$PC.SS ,na.rm=TRUE), 
temp$iteration,temp$precision.final) 

    } else { 

      PC.nb<-PC.nb[-PCn] 

      PCn<-PCn-1 

    } 

    PCn<-PCn+1 

  } 

  for (i in 2:Nb) 

  { 

    random.v<-rnorm(nrow(X)*ncol(X), mean(c(X), na.rm=TRUE), sd(c(X), 

na.rm=TRUE)) 

    for (PCn in 1:length(PC.nb)) 

    { 

      temp<-EM.AMMI(X, PC.nb[PCn], initial.values=random.v, precision, 

max.iter=max.iter, simplified.model= simplified.model) 

      Y[i,,PCn]<-temp$X[is.na(X)] 

      Y2[i,,PCn]<-c(sum(temp$PC.SS ,na.rm=TRUE), temp$iteration, 
temp$precision.final) 

    } 

  } 

  Y[,,]<-round(Y[,,]/ precision)*precision 

  return(list(estimated=Y,parameters=Y2)) 

} 

CV.LOO<-function(X,...,PC.nb=0:2,MNO=3) 

{ 

   PD<-matrix(NA,sum(!is.na(X)),length(PC.nb)) 

   dimnames(PD)[[2]]<-PC.nb 

   PD.nb<-0 

   for (j in 1:ncol(X)) 

   { for (i in 1:nrow(X)) 

   { if (!is.na(X[i,j])) 

   {  

       PD.nb<-PD.nb+1 

       X.ij<-X[i,j] 

       X[i,j]<-NA 

       X.i<-sum(!is.na(X[i,])) 

       X.j<-sum(!is.na(X[,j])) 

       if ((X.i>=MNO)&(X.j>=MNO)) 

       { 

         for (PC in 1:length(PC.nb)) 

         { 

           temp<-EM.AMMI(X,PC.nb[PC],...) 

           if ((temp$convergence)&(temp$PC.nb.final==PC.nb[PC])) 

           { PD[PD.nb,PC]<-(temp$X[i,j]-X.ij) } 

         } 

       } 
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       X[i,j]<-X.ij 

   }}} 

   return(list(RMSPD=colSums(PD^2,na.rm=TRUE)^0.5,differences=PD)) 

} 

 

Examples of use of the EM.AMMI() and repeat.EM.AMMI() functions. 

 
Example 1.  
Create a multiplication table: 

tab.M<-(1:20)%*%t(1:10) 

The positions of missing cells are: 

missing<-cbind(c(2,4,6,8,10,2,4,6,8,10,19,20), 

c(1,2,2,3,5,5,6,7,9,9,10,10)) 

tab.M[missing]<-NA 

The multiplication table with the missing values is displayed by typing: 

tab.M 

The missing cells are imputed 

result<-EM.AMMI(tab.M, 1, precision=0.001) 

and rounded 

round(result$X, digits=2) 

 

Example 2. 
Create a data set as follows and run EM-AMMI with one principal component: 

x<-cbind( c(2,3,NA,5,6,7,8), c(2,4,6,8,10,NA,14), c(NA,2,3,4,NA,6,7), 

c(3,NA,4,4,5,5,6)) 

EM.AMMI(x,1) 
 

The result is the list that contains (i) the complemented matrix X; (ii) the sums of squares for 
the principal components used: PC.SS = 36.909; (iii) the final number of iterations needed: 
iteration=49; (iv) the convergence has been achieved, which is why the value of 
precision.final=0.00942 is slightly smaller than the argument precision that was 
passed on to EM.AMMI procedure (it was not specified, so the default value of 0.01 was used); 
(v) the number of principal components used: PC.nb=1; (vi) convergence=TRUE because the 
convergence was obtained. 

As mentioned above, the change.factor argument can be used to shorten the 
computation time. In this example, the idea is to compute the first 20 iterations with 

change.factor=2; the outcome obtained that way (ini1) will then be used to run the EM-

AMMI function with change.factor=1 to obtain the final result.  

ini1<-EM.AMMI(x, 1, max.iter=20, change.factor=2) 

result<-EM.AMMI(x, 1, max.iter=10, initial.values=ini1$X, change.factor=1) 

result 

Since the second run of the function needed only 9 iterations, the final number of 
iterations was 29 instead 49. 

 
With the repeat.EM.AMMI function, the reliability of the AMMI models used in the 

EM-AMMI procedure with different numbers of principal components can be checked as 
follows: 

print(result<-repeat.EM.AMMI(x,10,0:2)) 

The EM-AMMI based on 0 or 1 principal component gave stable outcomes, with no 
local minima. The values imputed with the model without principal components (PC.nb was 
0, so the results can be approached by typing result$estimated[ , ,"0"] or shorter 

result$e[ , ,"0"]) were the same for each repetition. The values imputed with the model 
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with one principal component (result$estimated[ , ,"1"]) were the same for all the 
repetitions, but slightly different from those obtained with PC.nb=0. For two principal 
components (result$estimated[ , ,"2"]), however, there were too many empty cells to 
reach reliable imputation: the imputed values obtained in the repetitions were much 
different. 

The optimal number of principal components (from 0 to 2) to be used can be 
determined by the RMSPD values: 

CV.LOO(x,MNO=1)$RMSPD 

The result is the vector of RMSPD values (9.0, 3.1, 6.8) with the smallest value obtained 
for one principal component. The imputed values of the five missing cells 

(result$estimated[ , ,"1"]) according to EM-AMMI with one principal component 
were exactly same, that is, all repetitions gave the same set of imputed values: 4.04, 12.75, 
1.08, 5.06, 3.37. Thus we can take the set of estimated values from any of the 10 repetitions. 
For the first repetition these values can be reached wit the command result$estimated[ , 

,"1"][1, ] or result$estimated[1, ,"1"]). We can now fill in the missing values in the 
matrix x with the imputed ones: 

x[is.na(x)]<-result[,,2][1,] 

x 

     [,1]  [,2] [,3] [,4] 

[1,] 2.00  2.00 1.08 3.00 

[2,] 3.00  4.00 2.00 3.37 

[3,] 4.04  6.00 3.00 4.00 

[4,] 5.00  8.00 4.00 4.00 

[5,] 6.00 10.00 5.06 5.00 

[6,] 7.00 12.75 6.00 5.00 

[7,] 8.00 14.00 7.00 6.00 

CONCLUSIONS 

As follows from the author’s research (not published), the meaning of an allowable 
number of principal components is a bit overstated (cf. Gauch and Zobel, 1990). Especially if 
the chosen number of principal components is too large for the number of missing values, 
EM-AMMI estimations depend on the initial values of missing cells (but this dependency can 
occur even for large data sets with a moderate number of missing cells). The dependence on 
the initial values was presented in Example 2. According to Gauch and Zobel (1990), two 
principal components are permissible for this data set. But the imputed values obtained by 
repeat.EM.AMMI procedure with two principal components were diverse, suggesting that 
two principal components are not a good choice. Thus the function repeat.EM.AMMI() 
proposed in this paper can be employed to overcome this problem and to choose the best 
number of principal components. It aims to check whether the results depend on the initial 
values of missing cells; if not, the outcome can be treated as reliable. 
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