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ABSTRACT 
Field-based agronomic and genetic research is a decision-based process. Many decisions are required to 
design, conduct, analyze, and complete any field experiment.  While these decisions are critical to the 
success of any research program, their importance is magnified for research on perennial crops due to 
multiple years of data collection. The objective of this paper is to summarize 28 years of field-based 
perennial forage grass research at a single location describing changes to experimental design 
methodology, illustrating both predicted and empirical results of those changes. The study is based on an 
analysis of total forage yield for 114 genetic experiments of 11 forage grass species.  Over the course of 
time, plot sizes were reduced from 5.6 to 2.8 to 1.4 m2, resulting in a decrease in mean CV from 18.6 to 13.3 
to 11.5%, respectively.  These changes in precision, directly opposite that predicted from Smith’s Law of 
Heterogeneity, were attributed largely to a vastly improved relative efficiency of blocking and spatial 
adjustment as plot size was decreased: 212 vs. 130% relative efficiency of blocking and 240 vs. 109% 
relative efficiency of spatial adjustment for 1.4 vs. 5.6- m2 plots.  These changes suggested that spatial 
variation at this site consists of fine-scale variation that is uneven, unpredictable, and cannot be easily 
captured by incomplete blocking or spatial analyses of the larger experimental units.  Finally, a power 
analysis was used to predict the number of replicates required to detect expected differences for a series 
of experiments, resulting in a high level of predictability and a highly successful application of power 
analysis to assist with the design of field experiments. 
Key Words: blocking; coefficient of variation; spatial analysis; precision; experimental design. 

INTRODUCTION 
Field-based agronomic and genetic research is a decision-based process. Many decisions 

are required to design and conduct a field experiment, collect and analyze the data, and 
interpret the results.  A large number of these decisions have nothing to do with the 
hypotheses to be tested, but instead relate to the design of the experimental arrangement 
used to create valid and convenient hypothesis tests.  Common decisions include size and 
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shape of the experimental unit, number of replicates, randomization restrictions, block size 
and shape, method of data analysis, type and extent of replication (related to the desired 
range of inferences), and duration of the experiment. 

Most of these decisions are made using one or both of two broad criteria.  First, many 
elementary statistical textbooks and a few journal articles offer some general guidelines on 
broad concepts of field-plot trial design, such as when and how to use blocking designs, 
various methods of implementing randomization restrictions, and data analysis 
methodology (Cochran and Cox, 1957; Peterson, 1985; Quinn and Keough, 2002; Box et al., 
2005; Hinkelmann and Kempthorne, 2008). Second, equipment dimensions, convenience, and 
personal preferences drive many decisions, particularly size and shape of experimental units 
and blocks.  Many researchers are locked into particular dimensions that are partly 
determined by the size or capacity of planting or harvesting equipment, the size and shape of 
fields available for research, and colleagues’ perceptions, or perhaps even peer pressure. 

Perceptions play an important role in experimental design.  On one hand, many 
researchers are under the perception that there is no efficient scientific method of predicting 
appropriate size of experimental units and blocks for field-based research.  Instead, their 
decisions are based largely on their educational experiences, influences from colleagues 
conducting similar types of research, compilations from published studies of similar 
research, or guesses.  On the other hand, many researchers are often reluctant to make 
significant changes to experimental design methodology, largely due to perceptions that they 
will be subject to criticism from colleagues and referees, reluctance to leave the current 
“comfort zone”, or because they do not have the tools to predict the outcomes associated 
with changes in protocol. It is important to recognize that decisions we make with respect to 
experimental designs, for each and every field study that we establish, are not always active 
decisions, but may often be passive decisions. In other words, “If you choose not to decide, 
you still have made a choice” (Peart, 1980). 

The objective of this paper is to summarize 28 years of field-based research at a single 
location describing changes to experimental design methodology, illustrating both predicted 
and empirical results of those changes, and demonstrating how some relatively simple 
computations and analytical methods can be used to predict the effects of change for any 
researcher at any location where a reasonable amount of historical data exists.  These 
computations and predictions can be made from data collected on any routine field 
experiment, but the random nature of these variables lends significant doubt about the 
validity of extrapolating results from one field experiment to many future experiments.  
Rather, this paper uses data from 114 field experiments conducted at one location to establish 
trends from which predictions can be made for future experiments at this location, 
illustrating how this could be done for any quantitative variable measured routinely over 
many experiments conducted at any site.  This paper illustrates a model that could be 
employed by any long-term field-based research program that aims to improve precision 
and efficiency of phenotypic evaluation in field-based experiments. 

MATERIAL AND METHODS 
EXPERIMENTAL MATERIALS AND DESIGNS 

The study was conducted at the University of Wisconsin Arlington Agricultural 
Research Station (43.33º N, 89.38º W).  Experiments were planted between 1981 and 2007 on a 
Plano silt loam soil (fine-silty, mixed, superactive, mesic Typic Argiudoll).  The maximum 
slope was 1 to 2%. All trials followed 1 year of soybean [Glycine max (L.) Merr.] in a SGGGG 
or CSGGGG crop rotation, where S = soybean, C = corn (maize), and G = grass. 

The study is based on an analysis of total forage yield for 114 genetic experiments of 11 
forage grass species (Table 1): Kentucky bluegrass (Poa pratensis L.), meadow bromegrass 
(Bromus riparius Rehm.), meadow fescue [Schedonorus pratensis (Huds.) P. Beauv.], 
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orchardgrass (Dactylis glomerata L.), perennial ryegrass (Lolium perenne L.), quackgrass 
[Elymus repens (L.) Gould], reed canarygrass (Phalaris arundinacea L.), smooth bromegrass (B. 
inermis Leyss.), tall fescue [S. phoenix (Scop.) Holub], timothy (Phleum pratense L.), and tall 
oatgrass [Arrhenatherum elatius (L.) P. Beauv. Ex J. Presl & C. Presl].  Treatments in each 
experiment consisted of cultivars, breeding lines, half-sib families, or accessions, always 
based on genetic variation as the underlying source of variation, hereafter termed "genetic 
lines".  Five experimental designs were employed in these field experiments: randomized 
complete block (RCB); blocks in replicates, B/R (Casler, 1998); double simple lattice, DSL 
(Casler, 1999); augmented Latin Square, AUG (Casler et al., 2001) and split-plot 
randomization restriction within randomized complete blocks (SP). 

Plots were planted with a drill planter in five rows spaced 15 cm apart using 
recommended seeding rates.  All seed was planted on a pure-live-seed basis after adjusting 
for seed size and germination computed from in-house tests of all seed lots using standard 
procedures (AOSA, 2010).  Plots were planted in late April and establishment-year 
management consisted of two or three clippings to control annual weeds without 
fertilization or data collection. Plot lengths were 1.5, 3.0, or 6.0 m and harvested plot areas 
were 1.4, 2.8, or 5.6 m2 (Table 1). 

Plots were fertilized with 160-275 kg N ha-1 year-1, generally split equally among all 
harvests.  The entire plot in 93 machine-harvested experiments was harvested with a flail-
type harvester for the specified number of harvests in Table 1.  The only exception was the 
quackgrass plots, which were planted in 10 drill rows (1.5 m wide) and harvests were made 
from a 0.9-m strip in the center of each plot.  Dry matter determinations were made on 
random 300- to 500-g forage samples and were used to adjust plot yields to a dry matter 
basis.  Dry matter yields for each plot were summed over all harvests within each year. 

The remaining 21 experiments were planted on a different part of the research station, 
approximately 1 km apart from the machine-harvested experiments.  These experiments 
were grazed with cattle, generally five times per year.  Grazing was generally initiated when 
the canopy was between 20 and 30 cm in height.  Forage yield (net forage available) was 
estimated immediately prior to each grazing event, using a rising plate meter calibrated at 
the end of the experiment to a set of samples, usually from n=100 to 200, representing each 
harvest over the duration of the experiment.  For extremely small experiments, calibrations 
were pooled across species when found to be homogeneous (Casler et al., 1998).  Each 
experiment was mowed to a residual height of 7 cm immediately after each grazing event so 
that “forage yield” would be measured on an equivalent basis for both grazed and machine-
harvested experiments. 

STATISTICAL ANALYSES 
Each experiment was analyzed by linear mixed models analysis, assuming blocks to be a 

random effect and both genetic lines and years to be fixed effects.  For incomplete block 
designs (Table 1), both complete and incomplete blocks were assumed to have random 
effects. Residuals were computed and evaluated for normality using hypothesis tests in SAS 
PROC UNIVARIATE and visual inspection of normal probability plots.  Residuals were 
generally normally distributed with very few exceptions.  Residuals were plotted against 
predicted values to evaluate homogeneity of variance.  Eighteen experiments had 
heterogeneous variances across years and this effect was modeled as distinct variance groups 
using the "repeated" statement in SAS PROC MIXED (Littel et al., 1996).  
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Table 1. Number of genetic lines (g), replicates (r), rows (R), columns (C), years (y), total 
number of harvests (h), and plot size (eu) for 114 perennial forage grass field experiments 
conducted between 1981 and 2009 at Arlington, WI. 

Speciesa Yearb Experimentc Designd g r R C y h eu 
          m2

KB 1995 GKB95B RCB 2 4 2 4 3 15 5.6 
KB 1995 KB95B RCB 2 4 2 4 3 8 2.8 
MB 1994 GMB94 RCB 4 4 4 4 3 15 5.6 
MB 1994 MB94 RCB 2 4 2 4 3 8 2.8 
MF 1996 GIPP B/R 170 4 20 34 2 10 1.4 
OG 1981 OG81 RCB 33 5 5 33 4 9 5.6 
OG 1982 OG82 RCB 34 5 5 34 3 9 5.6 
OG 1983 OG83 RCB 8 4 4 8 3 9 5.6 
OG 1984 OG84 DSL 49 4 7 28 3 9 2.8 
OG 1985 OG85 DSL 30 4 12 10 3 7 2.8 
OG 1986 OG86 DSL 30 4 12 10 3 6 2.8 
OG 1986 OPIE B/R 448 2 56 16 2 5 1.4 
OG 1987 OG87 RCB' 35 4 10 14 3 6 2.8 
OG 1988 OG88 DSL 36 4 12 12 3 7 2.8 
OG 1989 NE144F SP 30 3 18 5 3 9 2.8 
OG 1989 OG89 RCB' 56 4 8 28 3 9 2.8 
OG 1991 OG91 RCB' 16 4 8 8 3 9 2.8 
OG 1993 FIYS-OG B/R 350 2 35 20 2 4 1.4 
OG 1994 GOBE-E AUG 25 3 15 5 3 15 5.6 
OG 1994 GOBE-L AUG 25 3 15 5 3 15 5.6 
OG 1994 GOBE-M AUG 36 3 18 6 3 15 5.6 
OG 1994 HOBE-E AUG 25 3 15 5 3 9 2.8 
OG 1994 HOBE-L AUG 25 3 15 5 3 9 2.8 
OG 1994 HOBE-M AUG 36 3 18 6 3 9 2.8 
OG 1995 GOB95B RCB' 10 4 5 8 3 15 5.6 
OG 1995 GOG95A RCB' 10 4 5 8 3 15 5.6 
OG 1995 OG95A RCB' 10 4 5 8 3 8 2.8 
OG 1995 OG95B RCB' 10 4 5 8 3 8 2.8 
OG 1997 OG144 SP 30 4 24 5 3 9 2.8 
OG 1998 FIYS2-OG SP 16 16 32 8 2 6 1.4 
OG 2002 PASSO RCB 3 8 3 8 3 9 2.8 
OG 2007 OPUS3F RCB 7 4 7 4 2 10 2.8 
OG 2007 OPUS3I RCB 7 4 7 4 2 10 2.8 
PR 1982 PR82 RCB 4 4 4 4 3 9 5.6 
PR 1983 PR83 RCB 6 4 4 6 3 9 5.6 
PR 1984 PR84 DSL 30 4 6 20 3 6 2.8 
PR 1985 PR85 DSL 36 4 12 12 3 3 2.8 
PR 1991 PR91 RCB' 32 4 16 8 3 9 2.8 
PR 1994 GPR94 RCB 7 4 7 4 3 15 5.6 
PR 1994 PR94 RCB 5 4 5 4 3 8 2.8 
PR 1997 WFL97 RCB' 3 8 3 8 3 9 2.8 
QG 1983 QUIER B/R 350 2 70 10 2 4 1.4 
QG 1988 SEER RCB' 10 4 10 4 2 6 2.8 
QG 1991 QG91 RCB 3 4 3 4 3 9 2.8 
QG 1992 SEERR RCB' 16 4 8 8 2 6 1.4 
QG 1993 FIYS-HW B/R 420 2 42 20 2 4 1.4 
QG 1994 GQG94 RCB 2 4 2 4 3 15 5.6 
QG 1994 QG94 RCB 2 4 2 4 3 8 2.8 
QG 1998 FIYS2-HW SP 16 16 32 8 2 6 1.4 
RC 1984 RC84 DSL 16 4 8 8 3 9 2.8 
RC 1989 RC89 RCB 3 4 3 4 3 9 2.8 
RC 1994 GRC94 RCB 6 4 6 4 3 15 5.6 
RC 1994 RC94 RCB 4 4 4 4 3 8 2.8 
RC 1995 GRC95A RCB 4 4 4 4 3 15 5.6 
RC 1995 GRC95B RCB 4 4 4 4 3 15 5.6 
RC 1995 RC95A RCB 4 4 4 4 3 8 2.8 
RC 1995 RC95B RCB 4 4 4 4 3 8 2.8 
RC 2001 STORC RCB' 15 8 20 6 2 7 1.4 
RC 2002 PASSR RCB 3 8 3 8 3 9 2.8 
RC 2005 NARC RCB' 88 3 33 8 2 6 1.4 
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SB 1982 SB82 RCB 13 4 13 4 3 6 5.6 
SB 1985 LAND1 RCB' 32 3 12 8 2 6 1.4 
SB 1989 LAND2 RCB' 40 3 15 8 2 6 1.4 
SB 1991 SB144 RCB 30 4 24 5 3 7 2.8 
SB 1991 SB91 RCB 3 4 3 4 3 9 2.8 
SB 1992 NEGS SP 18 3 9 6 3 8 2.8 
SB 1993 FIYS-SB B/R 350 2 35 20 2 4 1.4 
SB 1994 GSB94 RCB' 20 4 10 8 3 15 5.6 
SB 1994 SB94 RCB' 14 4 7 8 3 8 2.8 
SB 1997 SB97N SP 24 4 12 8 3 9 2.8 
SB 1997 SB97P SP 24 4 12 8 3 9 2.8 
SB 1998 FIYS2-SB SP 16 16 32 8 2 6 1.4 
SB 1999 DIAT SP 54 4 24 9 2 4 1.4 
SB 2000 DINS SP 28 4 14 8 3 6 2.8 
SB 2001 BEGM2 SP 70 4 40 7 2 4 1.4 
SB 2001 BEGM3 SP 70 4 40 7 2 5 1.4 
SB 2001 BEGM4 SP 70 4 40 7 2 6 1.4 
SB 2002 DINS2 SP 28 4 14 8 3 6 2.8 
SB 2002 RHIFS SP 48 4 24 8 3 8 2.8 
SB 2003 DIAT2 SP 54 4 24 9 2 4 1.4 
TF 1983 TF83 RCB 6 4 4 8 3 9 5.6 
TF 1985 TF85 DSL 16 4 8 8 3 7 2.8 
TF 1986 TF86 DSL 16 4 8 8 3 6 2.8 
TF 1987 TF87 RCB' 14 4 14 4 3 6 2.8 
TF 1989 TF89A RCB' 12 4 8 6 3 8 2.8 
TF 1989 TF89B RCB' 12 4 6 8 3 9 2.8 
TF 1991 TF91 RCB' 8 4 4 8 3 9 2.8 
TF 1994 GTF94 RCB 6 4 6 4 3 15 5.6 
TF 1994 TF94 RCB 4 4 4 4 3 8 2.8 
TF 1995 GTF95A RCB 5 4 5 4 3 15 5.6 
TF 1995 GTF95B RCB 5 4 5 4 3 15 5.6 
TF 1995 TF95A RCB 5 4 5 4 3 8 2.8 
TF 1995 TF95B RCB 5 4 5 4 3 8 2.8 
TF 1996 FENDO B/R 440 2 20 44 2 6 1.4 
TM 1982 TM82 RCB 12 4 4 12 3 6 5.6 
TM 1983 TM83 RCB 4 4 4 4 3 6 5.6 
TM 1985 TM85 DSL 16 4 8 8 3 6 2.8 
TM 1986 TM86 DSL 20 4 10 8 3 5 2.8 
TM 1987 TM87 RCB' 28 4 14 8 3 6 2.8 
TM 1988 TM88 RCB' 18 2 6 6 3 6 2.8 
TM 1989 TM89 RCB' 12 4 6 8 3 9 2.8 
TM 1991 TM91 RCB' 8 4 4 8 3 9 2.8 
TM 1994 GTM94 RCB' 10 4 5 8 3 15 5.6 
TM 1994 TM94 RCB 7 4 7 4 3 8 2.8 
TM 1995 GTM95A RCB 3 4 3 4 3 15 5.6 
TM 1995 GTM95B RCB 3 4 3 4 3 15 5.6 
TM 1995 TM95A RCB 3 4 3 4 3 8 2.8 
TM 1995 TM95B RCB 3 4 3 4 3 8 2.8 
TM 1999 TIMPE1F B/R 340 4 34 40 2 8 1.4 
TM 1999 TIMPE1I B/R 340 4 34 40 2 4 1.4 
TM 2007 TIMPE2F RCB 12 6 18 4 2 8 2.8 
TM 2007 TIMBE2I RCB 12 6 18 4 2 8 2.8 
TO 1994 GTO94 RCB 3 4 3 4 3 15 5.6 
TO 1994 TO94 RCB 3 4 3 4 3 8 2.8 

a KB = Kentucky bluegrass, MB = meadow bromegrass, MF = meadow fescue, OG = orchardgrass, PR 
= perennial ryegrass, QG = quackgrass, RC = reed canarygrass, SB = smooth bromegrass, TF = tall 
fescue, TM = timothy, TO = tall oatgrass. 

b Establishment year (no data collected during establishment year). 
c Experiments with a name beginning in ‘G’ were grazed.  All others were machine harvested. 
d AUG = augmented Latin Square, B/R = blocks-in-reps design, DSL = double simple lattice, RCB = 

randomized complete block in which blocks and rows are identical (Design A of Casler, 1999), 
RCB’ = randomized complete block in which there are undesigned row blocks within complete 
blocks (Design B of Casler, 1999), SP = split-plot randomization restriction within randomized 
complete blocks. 
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Year effects were modeled as a repeated measures factor, using either compound 
symmetry or heterogeneous compound symmetry covariance structures (Littel et al., 1996). 
Separate random error terms were modeled for years, genetic lines, and year x genetic line as 
suggested by Steel et al. (1997). Year x genetic line interactions were not the focus of this 
experiment and were completely ignored in the analyses described herein.  Regardless, year 
x genetic line interaction was significant in only about half of the experiments and it 
generally made up only about 10-30% of the variance of a “genetic line” mean in those 
experiments. 

In addition to the linear mixed models analysis, each experiment was analyzed by 
nearest neighbor analysis using two covariate terms (mean of direct north-south neighbors 
and mean of direct east-west neighbors).  Nearest neighbor analyses were conducted as 
described by Casler (1999) and Smith and Casler (2004).  The two covariates were fitted as 
random effects, including interaction terms with "years" in those rare cases where Akaike's 
Information Criterion suggested a better fit to the model, accounting for differential spatial 
variation across years (Littel et al., 1996). 

The coefficient of variation, coefficient of heterogeneity, relative efficiency of blocking, 
and relative efficiency of nearest neighbor analysis was computed for every experiment.  The 
CV was computed as CV = 100(r)(Vm)/M, where r = the number of replicates and M = the 
estimated grand mean of the experiment.   Relative efficiencies of Design 2 (Analysis 2) 
relative to Design 1 (Analysis 1) were computed as RE = 100(Vm1/ Vm2) and adjusted for 
degrees of freedom when dfe1 < 20 (Steel et al., 1997), where Vm = the average variance of a 
genetic line least-squares mean, accounting for variation associated with all random effects, 
including estimation errors of nearest neighbor covariates.  For relative efficiency 
computations, Design 2 was the design employed, while Design 1 was the next simpler 
design for comparative purposes, e.g. randomized complete block vs. completely 
randomized design, lattice design vs. randomized complete block design. 

For experiments with 5.6- or 2.8-m2 plots, formulas presented by Lin and Binns (1984) 
were used to predict the resulting CV if plot size was reduced by 50%.  This computation 
was achieved in four steps.  First, estimate the block variance component as 
 
s2B = (MSB – MSe)/t 
 
where t = number of treatments and the two mean squares are for blocks and the error term 
relevant to treatments (genetic lines) and MS = mean square.  These values were estimated as 
random effects using restricted maximum likelihood estimation within linear mixed models 
analysis (Littel et al., 1996).  This computation was conducted on the complete-block source 
of variation for every experiment (all designs, including all incomplete block designs, had a 
random effect associated with complete blocks).  Second, compute the intrablock correlation 
as 
 
rI = s2B/(s2B + s2e) 
 
where s2e = the residual variance from linear mixed models analysis (e.g. block  × year × 
genetic line interaction for the RCB design). Third, compute the coefficient of intrablock 
heterogeneity (Smith, 1938) as 
 
b = 1 – log[t – (t -1)(1 - rI)]/log(t). 
 
Fourth, the expected CV for a 50% reduction in plot size was computed for all experiments 
with 5.6- or 2.8-m2 plots as  
 
CVexp = CVobs(10-b[log(0.5)/2]) 
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where CVobs is the observed CV from each experiment (Lin and Binns, 1984). 
 One-way analysis of variance was used to analyze data for CVobs, CVexp, b, and RE.  
Fixed effects were fitted to these variables to account for species, establishment year, harvest 
method (grazing vs. machine), design type, number of genetic lines, the log-linear effect of 
plot size and all first-order interactions between these effects.  
 Lastly, a series of half-sib progeny tests (FIYS-OG, FIYS-HW, and FIYS-SB 
experiments in Table 1; Casler, 1998) were used to generate a power function for detection of 
significant differences among genetic lines using P(Type I error) = 0.05.  The purpose of this 
computation was to predict the number of replicates required to detect desired differences in 
future experiments designed to evaluate progeny populations selected from these three 
experiments.  The minimum number of replicates required was computed as 
 
r = [(tα + tβ)CV/d]0.5

where tα and tβ are two-tailed Student’s t-values for Type I (α) and Type II (β) error 
rates, and d = the desired detection level between treatment means as a percentage of the 
experiment mean (Steel et al., 1997). Based on the power function, r = 16 replicates were 
chosen for the next series of experiments (FIYS2-OG, FIYS2-HW, and FIYS2-SB experiments 
in Table 1; Casler, 2008) and a comparative analysis was conducted to assess the effectiveness 
of the power function to predict desired detection levels. 

RESULTS AND DISCUSSION 
Coefficients of variation ranged from 3.1 to 43.3% (Fig. 1).  Coefficients of heterogeneity 

ranged across nearly the entire range of possible values, from 0.045 to 1.000, but were 
decidedly skewed toward higher values (Fig. 2).  Relative efficiency of blocking ranged from 
89 to 321% for incomplete block designs compared to the randomized complete block design 
(Fig. 3). Relative efficiency of nearest neighbor analysis ranged from 89 to 349% compared to 
the randomized complete block design without spatial analysis (Fig. 3).   

Grass species and establishment year had a significant effect on coefficient of 
heterogeneity, coefficient of variation, and relative efficiency of NNA (Table 2).  
Experimental design had a significant effect only on CV, while experiment size (number of 
genetic lines) had no impact on these three statistics.  There was considerable variation 
among and within species for all three of these statistics (Table 3).  Perennial ryegrass had 
the highest average b-values and CV values, probably due to its role as the least winterhardy 
of these species at this location.  High values of b and CV are indicative of ineffective 
blocking and high levels of unexplained variation, both of which can be symptomatic of 
variability in forage yield induced by large and unpredictable stand losses.  While there was 
significant variation among experimental design types for CV, complex randomizations and 
incomplete block designs with small block sizes, e.g. lattice designs, were not a guarantee 
against high CV values (Table 4).  Augmented Latin Squares were the most efficient design, 
following by the various split-plot randomizations of the RCB design. Coefficients of 
heterogeneity, observed CVs, and predicted CVs were significantly greater for machine-
harvested plots compared to grazed plots, all with a common plot size of 5.6 m2 (Tables 2 
and 5). Reducing plot size was expected to have a greater impact on CV for machine-
harvested plots (30.6% increase) compared to grazed plots (17.4% increase).  Establishment 
year had the largest effect of all these fixed effects, with ranges of b = 0.31 ± 0.25 to 1.00 ± 
0.00, CV = 5.2 ± 0.9 to 21.4 ± 13.2, and RE(NNA) = 100 ± 3 to 270 ± 27 (data not shown).  
There were no significant effects of any first-order interactions among these fixed effects. 
 

 



Communicat ions in B iometry and Crop Sc ience, 8(1)  30 

 
Figure 1. Frequency distribution of coefficients of variation for mean forage yield of 114 
perennial forage grass experiments conducted at Arlington, WI between 1981 and 2009. 
 
 

 
Figure 2. Frequency distribution of coefficients of heterogeneity for mean forage yield of 114 
perennial forage grass experiments conducted at Arlington, WI between 1981 and 2009. 

 
 

 
Figure 3. Frequency distribution of relative efficiencies for A) incomplete blocking or B) 
nearest neighbor analysis, based on analysis of variance of forage yield for 114 perennial 
forage grass experiments conducted at Arlington, WI between 1981 and 2009. 
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Table 2. P-values of fixed effects associated with estimated coefficients of heterogeneity (b), 
coefficients of variation (CV), and relative efficiency of nearest neighbor analysis [RE(NNA)] 
for 114 perennial forage grass experiments planted between 1981 and 2007. 
Effect df b CV RE(NNA) 
Species 10 0.0148 0.0002 0.0103 
Establishment year 23 0.0045 0.0306 0.0123 
Grazing vs. Machine harvesting 1 <0.0001 <0.0001 0.4747 
Experimental design 5 0.4111 0.0276 0.0918 
Number of genetic lines 1 0.6995 0.9793 0.5838 
Plot size (log linear) 1 0.1624 0.0101 <0.0001 

 
Table 3. Mean plus or minus standard deviation for coefficients of heterogeneity (b), 
coefficients of variation (CV), and relative efficiency of nearest neighbor analysis [RE(NNA)] 
estimated on seven of 11 species with at least eight experiments (n) as shown in Table 1. 
Species n b CV RE(NNA) 
Orchardgrass 28 0.63 ± 0.23 12.2 ± 5.6 155 ± 79 
Perennial ryegrass 8 0.84 ± 0.16 23.0 ± 13.1 144 ± 1 
Quackgrass 8 0.74 ± 0.21 10.0 ± 5.6 152 ± 60 
Reed canarygrass 11 0.64 ± 0.26 10.8 ± 3.5 173 ± 38 
Smooth bromegrass 20 0.66 ± 0.21 10.4 ± 3.3 197 ± 77 
Tall fescue 14 0.61 ± 0.26 15.4 ± 6.5 141 ± 7 
Timothy 16 0.59 ± 0.26 12.9 ± 4.7 115 ± 99 

 
Table 4. Mean plus or minus standard deviation for coefficients of variation (CV) estimated 
from six types of experimental designs employed in 114 perennial forage grass field 
experiments, as shown in Table 1 (n = number of experiments). 
Experimental design n CV 
Augmented Latin Square design 6 4.7 ± 2.2 
Blocks in Reps design 8 13.0 ± 5.9 
Lattice designs 11 21.7 ± 9.7 
Randomized complete block (RCB)a 45 11.3 ± 5.9 
Randomized complete block (RCB')a 28 13.4 ± 5.6 
Split plots 14 9.7 ± 2.7 

a RCB = randomized complete block in which blocks and rows are identical (Design A of Casler, 1999), 
RCB’ = randomized complete block in which there are undesigned row blocks within complete blocks 
(Design B of Casler, 1999).  
 
Table 5. Empirical mean coefficients of heterogeneity and coefficients of variation for grazed 
and machine-harvested plots with a common plot size of 5.6 m2, including predicted 
coefficients of variation for decreasing plot size from 5.6 to 2.8 m2. The underlying 
measurement variable is forage yield of 29 perennial forage grass experiments conducted at 
Arlington, WI between 1981 and 2009. 
 
 
Plot type 

 
Number of 
experiments 

Empirical mean 
coefficient of 

heterogeneity (b) 

Empirical mean 
coefficient of 

variation (CV) 

Mean predicted 
coefficient of 

variation (CVpred) 

   % % 
Grazed 20 0.42 8.6 10.1 
Machine-harvested 9 0.72 18.6 24.3 
P-value  <0.0001 <0.0001 <0.0001 
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Table 6. Empirical mean coefficients of heterogeneity and coefficients of variation for three 
plot sizes and predicted coefficients of variation for decreasing plot size from 5.6 to 2.8 m2 or 
from 2.8 to 1.4 m2.  The underlying measurement variable is forage yield of 94 perennial 
forage grass machine-harvested experiments conducted at Arlington, WI between 1981 and 
2009. 
 
 
Plot size a

 
Number of 

experiments 

Empirical mean 
coefficient of 

heterogeneity (b) 

Empirical mean 
coefficient of 

variation (CV) 

Mean predicted 
coefficient of 

variation (CVpred) 

   % % 
5.6 m2 9 0.72 18.6 NA  
2.8 m2 63 0.64 13.3 24.3 
1.4 m2 22 0.83 11.5 16.9 
     
Slope  NA 0.116 NA 
P-value  0.1624 0.0101 NA 
R2(3)  0.06 0.99 NA 
R2(94)  0.01 0.07 NA 

a Slope = linear regression coefficient of variable as a function of plot size. P-value determined from 
log-linear plot-size contrast in one-way ANOVA. R2(3) = proportion of variation among plot-size 
means explained by regression. R2(94) = proportion of variation among raw data explained by 
regression. 

 
 
Table 7.  Mean relative efficiencies of nearest neighbor analysis and incomplete blocking for 
114 perennial forage grass experiments, including analysis of log-linear regressions on plot 
size. The underlying measurement variable is forage yield of 114 perennial forage grass 
experiments conducted at Arlington, WI between 1981 and 2009. 
 
 
Plot size a

 
Number of 
experiments 

Empirical mean relative 
efficiency of nearest neighbor 

analysis 

 
Empirical mean relative 

efficiency of blocking b

  % % 
5.6 m2 29 130 109 
2.8 m2 63 152 145 
1.4 m2 22 212 240 
    
Slope  -0.112 -0.170 
P-value  <0.0001 <0.0001 
R2(3)  0.89 0.81 
R2(114)  0.17 0.40 

a Slope = linear regression coefficient of variable as a function of ln(plot size). P-value determined from 
log-linear plot-size contrast in one-way ANOVA. R2(3) = proportion of variation among plot-size 
means explained by regression. R2(114) = proportion of variation among raw data explained by 
regression. 

b Only 40 trials qualified for estimation of the relative efficiency of incomplete blocking (n = 17, 20, and 
3 with 5.6-, 2.8-, and 1.4- m2 plot size). 
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Table 8. Least significant differences, expressed as a percentage of the mean, between genetic 
selections evaluated in 16-replicate field experiments at three locations in Wisconsin, USA 
(Experiments FIYS2-OG, FIYS2-SB, and FIYS2-HW in Table 1; data taken from Casler, 1999).   

Location Year 
Number of 

observations Orchardgrass 
Smooth 

bromegrass 
Hybrid 

wheatgrass 
   ------------------------  %  --------------------------- 
      
Arlington 1999 16 5.7 6.3 5.9 
Ashland 1999 16 5.6 4.7 3.4 
Marshfield 1999 16 6.0 5.4 4.6 
Arlington 2000 16 9.0 4.9 4.9 
Ashland 2000 16 5.5 7.3 8.7 
Marshfield 2000 16 3.8 4.8 4.9 
Arlington 2001 16 5.3 4.9 5.7 
Ashland 2001 16 6.8 8.6 10.6 
Marshfield 2001 16 4.5 5.4 6.4 
Arlington 3-yr mean 48 3.6 3.2 2.7 
Ashland 3-yr mean 48 3.2 3.2 3.4 
Marshfield 3-yr mean 48 3.1 3.6 4.2 

  
 
     The nine largest CV values and 26 of the 28 largest CV values originated from 

experiments with plot sizes of 5.6 or 2.8 m2.  The log-linear plot size effect was significant for 
CV (Table 2) and simple linear regression revealed a significant log-linear effect of plot size 
on empirical CV with a nearly perfect fit to the three plot-size means (Table 6). Due to the 
large amount of variation within plot sizes, the log-linear regression accounted for only 7% 
of the variation among raw CVs, but 99% of the variation among plot-size means.  The 
positive slope was unexpected, because predicted CV values averaged a 30.6% increase for 
decreasing plot size from 5.6 to 2.8 m2 and a 27.1% increase for decreasing plot size from 2.8 
to 1.4 m2, based on Smith's Law.  Empirical CVs decreased by 28.5% and 13.5% for the two 
plot size reductions, respectively. 

Higher values of b tend to result when blocking is relatively ineffective and are 
suggestive of situations in which CV is highly responsive to changes in plot size (Lin and 
Binns, 1984, 1986).  There appeared to be a slight trend toward smaller plots having larger 
coefficients of heterogeneity (Fig. 2), but this relationship was not significant due to extreme 
variability within plot sizes (Tables 2 and 6).  Nevertheless, of the 21 experiments with a plot 
size of 1.4 m2, 20 had b > 0.5 for a frequency of 0.95; of the remaining 93 experiments with 
larger plot size, 61 had b > 0.5 for a frequency of 0.66.  The contingency chi-square test (χ2 = 
7.32; p < 0.01) indicated that these two frequencies were significantly different. 

For the 40 incomplete block experiments, the relative efficiencies of incomplete blocking 
and nearest neighbor analysis were positively correlated with each other (r = 0.65; p < 0.01).  
Both relative efficiencies decreased significantly in a log-linear manner with increasing plot 
size (Table 7; Fig. 4).  The log-linear model fit very well for plot-size means of both relative 
efficiencies.  The response to increasing plot size was greater for incomplete blocking 
compared to nearest neighbor analysis. 

Averaged across the three large experiments planted in 1993 (three species), the power 
function predicted that r = 16 replicates would detect differences of 3% of the mean with 
Power = 0.1, 4% of the mean with Power = 0.3, 5% of the mean with Power = 0.5, and 6% of 
the mean with Power = 0.7 (Fig. 5).  Averaged across three years of data collection, increasing 
the number of effective “replicates” to 48, detection levels increased to 1% of the mean with 
Power = 0.65 and 2% of the mean with Power = 0.9.  The three experiments planted in 1998, 
as Phase 2 of that project, with r = 16 replicates had detection levels ranging from 4.9 to 9.0% 
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of the experiment mean for individual years and 2.7 to 3.6% of the mean for means over 
years (Table 5).  These values were indicative of Power = 0.50 to 0.85 for individual years and 
Power = 0.90 to 0.99 for means over years.  Detection levels were similar for identical 
experiments planted at two additional locations (Ashland and Marshfield, WI).  These 
values, deriving from the extreme high levels of replication, were critical in the analysis of 
data from these experiments, allowing detection of small but consistent differences between 
different breeding methodologies (Casler, 2008). 

 
 
 

 

Figure 4. Log-linear regressions of mean relative efficiencies for nearest neighbor analysis 
and incomplete blocking as a function of plot size for perennial forage grass experiments 
conducted at Arlington, WI between 1981 and 2009.  Statistics of these regression lines are 
shown in Table 4. 

 
 

 
Figure 5. Power function illustrating the minimum number of replicates required to detect 
differences between genetic lines of d = 2 to 6% of the mean, with computations based on the 
coefficients of variation for experiments FIYS-OG, FIYS-HW, and FIYS-SB (Table 1). 
Computations were based on an average CV = 11.3% for the three field experiments and a 
Type I Error rate of α = 0.05. 
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DISCUSSION 
The variance among plots of a constant size x (Vx) was long ago shown to have a logarithmic 
relationship to plot size, expressed as 
 
log(Vx) = log(V1) – b[log(x)], 
 
where log(V1) is the intercept of the log-linear regression (Smith, 1938). Because CV is simply 
a scaled version of Vx (strictly speaking, the trial mean is a constant with respect to plot size), 
it follows a similar relationship of an asymptotically decreasing function.  When plot size is 
small, CV is highly responsive to changes in plot size - small increases in plot size should 
have a significant impact on reducing CV, but small decreases can be problematic.  
Conversely, when plot size is large, CV is relatively unresponsive to changes in plot size, 
suggesting that large reductions in plot size could be used to create more cost-efficient or 
space-efficient designs. 

This relationship has always left researchers with a central core of questions: (i) what is 
the slope of this relationship for my field sites; (ii) can I afford to reduce plot size without 
sacrificing precision; and (iii) would I benefit significantly by increasing plot size? Prior to 
1984, empirical plotting and regression analysis was the only mechanism to estimate the 
slope of this relationship (Koch and Rigney, 1951; Smith, 1938).  This requires the laborious 
process of conducting a factorial or nested uniformity trial in which Vx is empirically 
estimated for a range of plot sizes (e.g. Casler and Tageldin, 1996). One cannot assume a 
particular value, because the slope of this relationship is highly variable, with values of b 
spanning nearly the entire range (0 ≤ b ≤ 1) in both the current study conducted at a single 
site and in Smith’s study that spanned a wide array of sites and species. 

Lin and Binns (1984) solved this problem by describing a simple set of computations that 
could be made from an ANOVA of any blocking design.  These computations can be easily 
automated in a spreadsheet, requiring minimal routine input values: number of treatments 
and variance component estimate for blocks, which is now part of the routine output in 
linear mixed models and generalized linear mixed models analyses (Littel et al., 1996).  The 
range in estimated coefficients of heterogeneity observed in this 28-yr case study (b = 0.04 to 
1.00) clearly indicated high levels of instability for a group of similar species evaluated in 
trials conducted within a 6-ha area of one research station. Published results from uniformity 
trials have previously suggested that these estimates are highly stable across years within 
narrow time frames (e.g. Koch and Rigney, 1951; Casler and Tageldin, 1996).  Of all the 
factors that varied among the 114 field studies in this case study, only one, grazed vs. 
machine harvested, accounted for any significant or consistent difference in estimated b 
values.  Because there were no relationships of these values with species, establishment year, 
or field divisions, most of the inconsistency must be taken as inherent variability in these 
estimates.  This instability suggests that numerous estimates of the coefficient of 
heterogeneity are required to obtain a reasonable assessment of the heterogeneity 
characteristics of a particular site, assessed by the distribution and range of possible values 
and the most likely values encountered (e.g. Fig. 2), as opposed to the simple mean across 
trials. 

The failure of the Lin and Binns (1984) method to predict empirical changes in CV should 
not be viewed as an indication of inadequacy of this methodology.  Rather, the decrease in 
CV associated with a decrease in plot size is a reflection of synergistic effects between changes 
to both plot size and experimental design that could not be predicted from these 
computations.  Neither blocking nor spatial analyses were highly effective for the larger plot 
sizes utilized during this time period.  However, numerous types of incomplete block 
designs, as well as nearest neighbor analyses, were highly effective for the smallest plot size, 
suggesting that soil heterogeneity is largely manifested on a very small scale within this 
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experimental area.  Incomplete block sizes generally ranged from 4 to 10 plots per block, for 
a total block size of 5.6 to 14.0 m2 for 1.4-m2 plots.  Block sizes larger than these were 
marginally or sporadically effective, as shown by relatively low mean relative efficiencies 
(Table 4).  Nearest neighbor analyses were sporadically effective for the largest plot size 
because of their inability to capture spatial variability on a fine scale.  The larger plots were 
too internally heterogeneous to be effective in capturing spatial variability on this fine scale. 

This result raises an interesting question: does Smith’s Law of Heterogeneity apply to 
this site?  Strictly speaking, yes.  A classical uniformity trial conducted on one field within 
this 6-ha area behaved exactly as expected, with a large decrease in CV as a function of 
increasing plot size (Casler and Tageldin, 1996).  In the broader sense, over time and space, 
the general principle of Smith's Law does not appear to be applicable to this particular site.  
The large amount of variability among estimates of heterogeneity coefficients and the lack of 
explanatory factors for that variability, suggest that the patterns of variability are random, 
unpredictable, unrepeatable, and manifested on a fairly small geographic scale.  Incomplete 
block designs were considerably and consistently more effective than predicted by Casler 
and Tageldin (1996), suggesting that a single uniformity trial, as reliable as it may be for that 
particular point in space and time, cannot represent variability in neighboring fields, as 
similar as they may appear based on visual evaluations and soil-test data, nor long-term 
trends for that particular field.   

Finally, the nature of spatial variability at this site suggests that routine use of the 
smallest practical and realistic plot size, sufficient to provide reliable estimates of sward-plot 
biomass yield, will most efficiently utilize scarce research resources.  Ignoring cost for the 
moment, resource-allocation exercises using variance component analyses indicate that more 
replicates of smaller plots are always better than the converse when land area or seed 
quantities are fixed (Lin and Binns, 1984, 1986; Cherney et al., 1995; McCann et al., 2012).  
This is often the case in a breeding program where land area, labor, daylight hours, and seed 
quantities are always factors limiting the number of families and replicates that can be 
employed to conduct progeny tests (Casler and Brummer, 2008).  For one series of 
experiments, power analysis was a highly reliable method of predicting the number of 
replicates required to detect a desired difference between treatment means. While some of 
the experiments utilized in this case study were strictly intended to “pick the winners” (to 
chose the best families for selection and breeding), most were intended to provide treatment 
means with LSD values to be used in decision analysis of significant and meaningful 
differences among treatments.  Future field studies of this nature would benefit greatly from 
some preplanned thought about desired detection levels and a thorough power analysis to 
predict the number of replicates required to reach that detection level.  These analyses may 
lead to widely varying decisions regarding the optimal number of replicates in field trials, a 
result that may be unsettling to some researchers who are accustomed to long-term routines. 

The specific choice of experimental designs for this site does not appear to be critical for 
field experiments using plot sizes on the low end of the scale studied herein.  Blocking 
experiments with quite small block sizes (4 to 12 plots) are a wise choice, providing two 
options for controlling spatial variation during the data analysis phase (allocating degrees of 
freedom and variation to blocks or conducting spatial analyses such as nearest neighbor 
analysis).  Viable options include split-plots, lattices, row-column designs, blocks-in-reps 
(and reps-in-blocks), and numerous balanced and unbalanced incomplete block designs  
(Cochran and Cox, 1957; Peterson, 1985; Hinkelmann and Kempthorne, 2008).  For small 
experiments, with fewer than 10 treatments, the penalty in lost degrees of freedom is 
potentially severe, suggesting that incomplete block designs should not be an automatic 
choice.  Classically, completely randomized designs have not been frequently employed in 
field-based research.  However, their simplicity and maximum error degrees of freedom, 
combined with modern and advanced methods of spatial analysis (Fischer and Getis, 2010) 
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suggest that this design is a viable option for certain circumstances in which blocking 
designs are not desirable or practical.   

That said, I offer one very important caveat for the routine use of blocking designs in this 
type of field-based research program.  Well-placed and regularly spaced borders between 
blocks can be strategically used to control variability associated with unexpected events, 
such as equipment breakdowns, weather delays, or lack of labor availability.  Any of these 
factors can cause delays in harvesting in the middle of medium to large field experiments.  
Because such delays result in discrete boundaries, some of which can be planned to match 
block boundaries, simple analyses that account for these effects as a fixed environmental 
effect, or as part of a random block effect, will be much more effective than trying to capture 
this variation in a continuous spatial variable across the entire experimental area.  The 
advantage of preplanning block boundaries into the field experiment is that blocks can be 
organized to be orthogonal with treatments, whereas the introduction of unexpected delays 
or breaks at random places in the experiment would lead to potential lack of orthogonality.  
Numerous studies have demonstrated the empirical value of blocking designs, particularly 
those with smaller block sizes, such as 8-12 treatments (Baird and Mead, 1991; Lin et al., 
1993; Kempton et al., 1994; Handa et al., 1995).  In particular two-dimensional blocking can 
be extremely effective when little or nothing is known in advance about spatial variability in 
the field (Lin et al., 1993; Kempton et al., 1994).  Both smaller block sizes and two-
dimensional blocking lend themselves much more readily to retrospective adjustments of 
unexpected events, such as harvester breakdowns or weather delays. 

CONCLUSIONS 
Secondary statistics, computed from analyses of variance, can have value in predicting 

the effects of changes in experimental designs.  However, the highly variable nature of these 
statistics across time and space indicate that long-term observations and trends are highly 
superior to short-term observations from a small number of field experiments.  Over the 28-
year history of these experiments, the decisions to reduce plot size from 5.6 to 2.8 m2 and 
from 2.8 to 1.4 m2 were made strictly on a practical basis, due to limitations in land area 
available, seed quantities, or equipment size and functionality.  The reductions in CV 
associated with reduced plot size, and concomitant increases in power, were completely 
serendipitous, owing to the nature of spatial variation that could only be adequately 
described in this retrospective analysis for this particular site.  Conversely, the reductions in 
CV associated with increasing the number of replicates were largely as predicted by power 
analyses, indicating the value of this underutilized method for assisting in the design of 
experiments.  While the conclusions drawn from this retrospective analysis apply strictly to 
this site, there are likely numerous other sites that share similar characteristics.  A similar 
retrospective analysis would reveal these characteristics, but also be of value for sites with 
different spatial characteristics, potentially revealing unknown patterns and the scale at 
which spatial variation interferes with the ability to detect differences among treatment 
means. 
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