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ABSTRACT 
Linear mixed models often comprise several effects, and the focus is usually only on one or a few of them, 
while the other effects need to be fitted merely to adjust for all sources of variation. A typical example is 
the analysis of a blocked experiment, where the effects of interest pertain to treatments, while effects for 
replicates and incomplete blocks need to be taken into account in order to obtain efficient estimates of 
treatment effects. If fixed and random effects that are not of major interest were known beforehand, we 
could subtract these from the observed data, and a reduced model could then be fitted to these corrected 
data in order to estimate the effects of interest. In practice, this approach cannot be used directly, however, 
because true values of the effects are unknown. But we may replace unknown effects by their estimates. 
We show in this paper, that a reduced model fitted to these ‘empirically’ corrected data yields BLUE and 
BLUP of fixed and random effects of interest in the full model. Using examples, this result is 
demonstrated to be useful for illustrating the recovery of inter-block information and for understanding 
the properties of estimators obtained from mixed-model analysis. 
Key Words: intra-block analysis; linear model; linear mixed model; recovery of inter-block 
information; shrinkage; sweeping. 

INTRODUCTION 
Linear models can be fitted to data in order to make inferences for effects of interest, 

while controlling for other (nuisance) effects that are not themselves of primary interest, but 
are important sources of variation. For example, analysis of data from a blocked experiment 
can be based on the linear model 
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ijjiij eby ++= µ  , (1) 
 
where  is the response of the i-th treatment ijy ( )Ii ,...,1=  in the j-th block , ( )Jj ,...,1=

iµ  is the mean of the i-th treatment,  is the fixed effect of the j-th block, subject to the 

constraint , and  is the random error term associated with , assumed to be 

independently normally distributed with constant variance . We are interested in making 
inferences regarding the treatment means, while block effects need to be accounted for to 
represent the randomization layout and to increase precision. 
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Analysis based on model (1) entails estimating all effects simultaneously and then 
deriving inference for effects of interest. In our experience from teaching linear model 
concepts, however, many researchers prefer a two-stage view, according to which the data 
are first corrected for nuisance effects, and the corrected data, now presumed to be free of 
nuisance effects, are then subjected to analysis focusing on the effects of interest. In the 
example, if we knew the values of block effects, we could subtract these from both sides of 
(1) and then perform an analysis based on the resulting reduced model, which in this case 
would boil down to a one-way analysis of variance. In practice, the nuisance effects are not 
known but have to be estimated. The purpose of this paper is to show that an analysis of the 
corrected data using a model reduced by first accounting for estimated nuisance effects 
yields the best point estimates of fixed and random effects of interest, i.e., the best linear 
unbiased estimators (BLUE) and best linear unbiased predictors (BLUP), respectively. The 
method does not usually provide any computational advantages over the standard 
procedures, but we have found it to be useful for teaching purposes because of its intuitive 
appeal and interpretive insights. In particular, the method can be used to explain the so-
called recovery of inter-block information (Yates, 1940) in blocked experiments. In this paper, 
we first develop the general result in Section 2. This is then applied to special cases in Section 
3. 

THE LINEAR MIXED MODEL 
Consider the linear mixed model (McLean et al., 1991; Searle et al., 1992) 
 

eZuXy ++= β , (2) 
 
where  and X Z  are known design matrices for fixed effects β  and random effects u , 

respectively. The expected values of random effects are ( ) 0=uE  and , the variances 
are  and , and the covariance is , so that 

. It is assumed here that the positive-definite variance-covariance 

matrix  and the residual variance  are known. We further assume that model (2) can be 
partitioned as follows: 

( ) 0=eE
( ) Gu =var ( ) Ie e

2var σ= ( ) 0,cov =eu
( ) IZGZVy e

T 2var σ+==

G 2
eσ

2211 βββ XXX +=  and (3) 
2211 uZuZZu += , (4) 

where ,  and ( ) 11var Gu = ( ) 22var Gu = ( ) 0,cov 21 =uu . We assume here that both  and 
 have full column rank and that 

1X

2X ( ) ( ) ( )21 XspXspXsp ∪= , where  denotes the 
column space generated by a matrix 

( )Asp
A . The effects of principal interest are taken to be 1β  

and , but the analysis also needs to account for the other effects 1u 2β  and , which are 2u
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themselves not of intrinsic interest. The solution of the mixed model equations pertaining to 
β  is 
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where we have used  with  
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A . The best linear unbiased estimator (BLUE) of estimable functions 
βK  is given by  (McLean et al., 1991). The best linear unbiased predictor (BLUP) of u  is β̂K
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We now consider a two-stage representation of the BLUE and BLUP in (5) and (6), 

respectively, in which we correct the observed data for nuisance effects 2β  and  in the first 
stage. In the second stage the corrected data are used to estimate 

2u

1β  and . The intuition 
underlying our approach is that if we knew 

1u

2β  and , we could compute the corrected data  2u
 

2222
* uZXyyc −−= β   (7) 

 
and fit the reduced model  

 
euZXyc ++= 1111

* β  (8) 
 

with ( ) IZGZVy e
T

cc
2

111
*var σ+== . In practice, we need to replace the unknown effects 2β  

and  with their estimators, so the corrected data are computed as 2u
 

2222 ˆˆ uZXyyc −−= β , (9) 
 

where the estimates  and  are obtained from (5) and (6), respectively. 2β̂ 2û
 

Proposition 1: One may analyse  in (9) as if its variance-covariance structure were the 

same as that of  in (8) under the reduced model. Thus, we may fit the model 
cy

*
cy

 
cc euZXy ++= 1111β , (10) 

 
where  is an error term associated with , as if ce cy eec = .  The estimators of 1β  and  
under this naïve model yield the BLUE of 

1u

1β  and the BLUP of  under the full model (1), 
i.e., 

1u
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( ) 111
1

111 ˆ~~ uXyVZGu cc
T =−= − β  . (12) 

 
Thus, the single-stage estimators of 1β  and  can be represented in two stages, i.e., we 

first compute corrected data , removing the estimates of the nuisance effects 
1u

cy 2β  and , 
and then use the estimators in (11) and (12). A proof of Proposition 1 is given in the 
Appendix.  

2u

We note here that while equations (11) and (12) yield correct point estimates of effects, 
they do not lend themselves for further statistical inference (significance tests or confidence 

intervals). For example, the variance of 1
~β  is certainly not generally equal to . 

Also, a valid estimate of , i.e., an estimate that is equivalent to the restricted maximum 
log-likelihood (REML) estimate based on the full model (2), cannot be obtained in the second 
stage using standard procedures, because of the approximate nature of the error model. 
Thus, an estimate of  must be available from the first stage. Moreover, in order to remove 

( ) 1
1

1
1

−− XVX c
T

cV
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2β  and , we estimate the full model, which already yields direct estimates of 2u 1β  and , 
so our method does not provide any computational advantages. Thus, we do not suggest 
using this two-stage scheme in practice. The important point to note here is that we may 
consider this two-stage scheme not only because it leads to the known best estimators, but 
also because it provides some useful insights into the properties of treatment effect 
estimators in blocked experiments that are not readily apparent from other methods. This 
will be illustrated in the following examples. 

1u

SPECIAL CASES AND EXAMPLES 
RESULT APPLIED TO A FIXED EFFECTS MODEL  

Consider the fixed effects model 
 

eXXy ++= 2211 ββ , (13) 
 
where the notation follows that used in (1). For example, 1β  may comprise fixed 

treatment effects and 2β  may comprise fixed block effects in a randomized block experiment 
(see eq. 1). We now use corrected data 

 

22β̂Xyyc −= , (14) 
 
where  is the ordinary least squares estimator of 2β̂ 2β  under model (13). Of course, the 

distributional properties of  in (14) are not identical to those of cy 22βXy − , but from 
Proposition 1, an analysis that naïvely pretends that they are, does, in fact, yield the BLUE of 

1β . Hence, using the corrected data  in (14), we fit the linear model cy
 

cc eXy += 11β  (15) 
 
by ordinary least squares, yielding the estimator 
 

( ) c
TT yXXX 1

1
111

~ −
=β . (16) 
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It follows from Proposition 1 that the two-stage estimator in (16) is equivalent to the 
BLUE of 1β  based on (13).  

 
Table 1: Yoghurt tasting raw data (Mead et al., 1993, p.81) and data corrected for estimated 
block effects assuming either fixed or random block effects (see Table 2), , and 
arithmetic treatment means computed from these corrected data. Fixed effects were 
estimated by BLUE, random effect estimates were obtained by BLUP. 

( ) jijijc byy ˆ−=

 
 

    Taster   

Yoghurt Data 1 2 3 4 Mean 

Raw data 8 5 9   7.333 

Corrected - blocks fixed 6.625 6.750 7.500   6.958 A 

Corrected - blocks random 6.750 6.591 7.636   6.992 

Raw data 6 2   2 3.333 

Corrected - blocks fixed 4.625 3.750   3.125 3.833 B 

Corrected - blocks random 4.750 3.591   3.023 3.788 

Raw data 4   4 3 3.667 

Corrected - blocks fixed 2.625   2.500 4.125 3.083 C 

Corrected - blocks random 2.750   2.636 4.023 3.136 

Raw data   4 7 4 5.000 

Corrected - blocks fixed   5.750 5.500 5.125 5.458 D 

Corrected - blocks random   5.591 5.636 5.023 5.417 

 
Example 1: In order to illustrate our result as applied to a fixed-effects model, we consider 
the yoghurt tasting data described in Mead et al. (1993, p.81). The data is reproduced in 
Table 1. The experiment was laid out according to a balanced incomplete block design. We 
use model (1) for analysis, taking tasters as blocks and yoghurts as treatments. Treatment 
means correspond to 1β , while block effects relate to 2β  in model (13). Least squares 
estimates for taster effects are given in Table 2. Note that the design matrix  for fixed 

block effects has full column rank if we replace the last block effect by , in 

accordance with the constraint , so that  has 
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columns. The observed data were corrected using  (Table 1). We fitted the 

reduced model 
( ) jijijc byy ˆ−=

( ) ( )ijciijc ey += µ  to the corrected data, which boils down to computing the 
arithmetic means (i.e., simple averages) of the corrected data for each treatment. These 
arithmetic means coincide with the adjusted treatment means obtained by directly fitting 
model (1), which confirms the general result in Proposition 1. This example lucidly 
illustrates, in an intuitive way, the fact that fitting model (1) provides an adjustment for block 
effects.  
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Table 2: Estimates of taster effects  obtained from a linear model package. Fixed effects 

were estimated by BLUE (subject to the constraint ), random effects were estimated 

by BLUP. 
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Taster 
Effect estimate 

1 2 3 4 

BLUE 1.375 -1.750 1.500 -1.125 

BLUP 1.250 -1.591 1.364 -1.023 

 
 

RESULT APPLIED TO A MIXED EFFECTS MODEL 
Now consider the mixed model (2) and assume that we wish to estimate fixed effects β , 

correcting for random effects . In analogy to the fixed effects case, we will use corrected 
data 

u

 
uZyyc ˆ−= , (17) 

 
where  denotes the BLUP of  based on (2), and fit the following model to the 

corrected data: 
û u

 
cc eXy += β . (18) 

 
This leads to the estimator  
 

( ) c
TT yXXX 1~ −

=β . (19) 
 
From Proposition 1 this estimator is equivalent to the BLUE of β  under the mixed 

model (2).  
 

Example 1 (continued): This time, we fit blocks (tasters) in model (1) as random effects in 
order to recover the inter-block information (Patterson and Thompson, 1971). Thus, 
treatment means pertain to β , while block effects are collected in u  of (2). Note that the 

fixed-effects constraint  is now replaced by the assumption 0
1

=∑
=

J

j
jb ( ) 0=jbE  for the 

random block effects. The residual maximum likelihood (REML) estimates of the variance 
components for blocks and error are  and , respectively. We 
subtract BLUPs of block effects (Table 2) from the observed response, yielding corrected data 

, and then fit a fixed-effects model with effects for treatment means 

(

5667.2ˆ 2 =bσ 6833.0ˆ 2 =eσ

( ) jijijc byy ˆ−=

( ) ( )ijciijc ey += µ ) to the corrected data (Table 1). This is equivalent to computing arithmetic 

means for  per treatment and yields treatment means that are identical to BLUE under 
the mixed model.  

( )ijcy
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It is noteworthy that the adjusted means based on adjustments with random block effects 
are closer to the arithmetic yoghurt means than are the adjusted means obtained with fixed 
block effects (Table 1). Our approach nicely illustrates that this observation, which generally 
holds for analyses of incomplete block designs, can be explained by the shrinkage of block 
effect estimates under the random block effects model. The fact that this shrinkage must 
reduce the adjustment compared to the fixed block effects model can be seen directly from 
the equation for corrected data ( ), and it is readily verified by comparing the 
adjustments in Table 2.  

( )ijcy

 

RESULT APPLIED TO CORRECTION FOR BOTH FIXED AND RANDOM EFFECTS  
In Example 1, we considered correction for a fixed or a random nuisance effect, when the 

effect of interest is fixed. In more complex models, there may be a need to account for both 
fixed and random effects. For example, in a resolvable row-column design, rows and 
columns are incomplete blocking units nested within complete replicates. In the analysis, one 
may want to correct for fixed effects of complete replicates and for random effects of rows 
and columns nested within complete replicates. Using the same definitions as before, we 
may write the mixed model as 

 
eZuXXy +++= 2211 ββ , (20) 

 
where the fixed effects of interest are 1β , while we want to correct for fixed effects 2β  

and random effects u . Thus, we compute corrected data 
 

uZXyyc ˆˆ
22 −−= β ,  (21) 

 
where  and  denote the BLUE of 2β̂ û 2β  and the BLUP of u , respectively, based on (20). 

We then fit the model 
 

cc eXy += 11β  (22) 
 
by ordinary least squares.  
 

Example 2: Table 3 reports data from a field experiment to test 35 wheat genotypes using a 
resolvable row-column design. A complete replicate is subdivided into incomplete rows and 
columns. Thus, we have incomplete blocks in both rows and columns. We may either take 
rows and columns as fixed (intra-block analysis) or random (combined intra-block-inter-
block analysis with recovery of information). We here chose the latter option. 
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Table 3: Design and grain yield data for 35 genotypes of wheat in two replicates with five 
rows and seven columns (reproduced from Table 4.16 of Mead (1997, p. 62). § Numbers refer 
to genotype IDs. 

 

  Design by Genotype ID   Yield 

 Replicate 1 

  Col-1 Col-2 Col-3 Col-4 Col-5 Col-6 Col-7  Col-1 Col-2 Col-3 Col-4 Col-5 Col-6 Col-7

Row 1 20 4 33 28 7 12 30  3.77 3.21 4.55 4.09 5.05 4.19 3.27 

Row 2 10 14 16 21 31 6 18  3.44 4.30 . 3.86 3.26 4.30 3.72 

Row 3 22 11 19 26 29 15 23  3.49 4.20 4.77 2.56 2.87 1.93 2.26 

Row 4 24 25 5 32 2 27 8  3.62 4.52 4.23 3.76 3.61 3.62 4.01 

Row 5 17 9 3 34 13 35 1  3.81 3.75 4.81 3.69 4.61 2.68 4.15 

 Replicate 2 

Row 1 31 19 25 34 20 8 6  4.70 7.37 5.03 5.33 5.73 4.70 5.63 

Row 2 24 21 12 4 23 13 3  4.07 5.66 4.98 4.04 4.27 4.10 4.75 

Row 3 11 7 26 5 35 10 30  5.66 6.43 4.59 5.20 4.83 4.70 4.23 

Row 4 33 9 17 18 32 15 2  5.71 6.13 4.63 5.48 5.47 . 4.16 

Row 5 1 27 16 29 14 28 22  5.22 6.16 4.20 4.66 5.54 3.81 3.60 

 
 
The mixed model used for analysis is 
 

ijhkjkjhjiijhk ecry ++++= γµ  (23) 
 
where 
 

ijhky  =  yield of i-th genotype in h-th row and k-th column nested within  
  j-th complete replicate 

iµ   =  mean of i-th treatment 

jγ  = effect of j-th complete replicate, subject to the constraint 0=∑ j jγ  

jhr   =  effect of h-th row within j-th replicate; ( )2,0~ rjh Nr σ  

jkc   =  effect of k-th column within j-th replicate; ( )2,0~ cjk Nc σ  

ijhke  = residual plot error associated with ; ijhky ( )2,0~ eijhk Ne σ  
 
The REML estimates of the variance components are , , and 

. The adjusted genotype means obtained by a REML-based analysis using the 
model (20) are shown in Table 4. The same estimates are obtained by our step-wise approach 
as follows:  

064.0ˆ 2 =rσ 192.0ˆ 2 =cσ
090.0ˆ 2 =eσ

(i) We first fit (23) to obtain the BLUPs of row and column effects (Table 5) and the 
BLUEs of jγ  ( 611.0ˆˆ 21 −=−= γγ ).  
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(ii) Using these, we compute corrected data ( ) jkjhjijhkijhkc cryy ˆˆˆ −−−= γ  (Table 6).  
(iii) Computing arithmetic means per genotype for these corrected data, corresponding 

to an ordinary least squares fit of the model ( ) ( )ijhkciijhkc ey += µ , yields the same means as the 
adjusted means in Table 4. 

 
Table 4: Adjusted genotype means for wheat data in Table 3 based on model (20). 

 
ID Mean   ID Mean   ID Mean   ID Mean   ID Mean 

1 4.814   8 4.602   15 3.216   22 4.012   29 3.794 

2 3.915   9 4.351   16 3.955   23 3.424   30 3.953 

3 5.098   10 4.328   17 4.153   24 3.888   31 3.859 

4 3.521   11 4.932   18 4.564   25 4.640   32 4.264 

5 4.396   12 4.946   19 5.670   26 3.759   33 4.914 

6 5.410   13 4.682   20 4.319   27 4.670   34 4.298 

7 5.085   14 4.765   21 4.594   28 4.294   35 3.602 

 
 

Table 5: BLUPs of row and column effects (  and ) based on model (23) using REML. jhr jkc
 

  Replicate 1   Replicate 2 

No Row Column   Row Column 

1 0.164 0.089  0.168 -0.019 

2 -0.113 0.151  -0.305 0.786 

3 -0.291 0.137  0.156 -0.197 

4 0.148 -0.035  0.149 0.198 

5 0.093 0.205  -0.169 0.441 

6  -0.384   -0.647 

7   -0.163     -0.562 

 
Example 2 (continued): Now assume that the genotype effect is modeled as random and we 
want to estimate genotype means. Thus, in model (23), we replace iµ  with ig+µ , where µ  
is a general mean (fixed) and  is the random effect of the i-th genotype (breeding values), 
which can be modeled to be correlated, either using pedigree information, or using marker 
data as in genomic selection (Piepho, 2009). In this case, we can make the following 
associations with respect to the general model (2): 

ig

1β  = fixed intercept, 2β  = fixed replicate 
effect,  = random genotype effects,  = random block effects. Corrected data are 
computed by subtracting estimates of replicate and block effects. In stage two, ordinary least 
squares is not the preferred method of estimation, because . Instead, we now need 
to use an estimate of  obtained from the first stage in order to estimate both 

1u 2u

IV ec
2σ≠

cV 1β  and  as 
per equations (11) and (12). 

2u
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Table 6: Corrected data ( ) jkjhjijhkijhkc cryy ˆˆˆ −−−= γ  for wheat data in Table 3. Fixed effects 

( jγ ) were estimated by BLUE (subject to the constraint ), random effects 0
1

=∑
=

J

j
jγ ( )jkjh cr ,  

were estimated by BLUP (Table 5). 
 

  Design by Genotype ID   Adjusted Yield 

 Replicate 1 

 Col-1 Col-2 Col-3 Col-4 Col-5 Col-6 Col-7  Col-1 Col-2 Col-3 Col-4 Col-5 Col-6 Col-7 

Row 1 20 4 33 28 7 12 30  4.129 3.506 4.860 4.573 5.293 5.021 3.881 

Row 2 10 14 16 21 31 6 18  4.075 4.873 . 4.619 3.779 5.408 4.607 

Row 3 22 11 19 26 29 15 23  4.304 4.951 5.535 3.497 3.567 3.216 3.325 

Row 4 24 25 5 32 2 27 8  3.994 4.832 4.556 4.258 3.868 4.467 4.636 

Row 5 17 9 3 34 13 35 1  4.240 4.117 5.191 4.244 4.923 3.582 4.831 

 Replicate 2 

Row 1 31 19 25 34 20 8 6  3.940 5.805 4.448 4.353 4.510 4.567 5.413 

Row 2 24 21 12 4 23 13 3  3.782 4.568 4.871 3.536 3.522 4.440 5.005 

Row 3 11 7 26 5 35 10 30  4.912 4.878 4.020 4.235 3.622 4.580 4.025 

Row 4 33 9 17 18 32 15 2  4.968 4.584 4.067 4.522 4.269 . 3.962 

Row 5 1 27 16 29 14 28 22  4.796 4.932 3.955 4.020 4.657 4.014 3.720 

 
 

DISCUSSION 
This paper has shown how mixed model analyses involving fixed and random effects of 

interest as well as fixed and random nuisance effects that need to be corrected for can be 
represented in a two-stage form, where an adjustment for the nuisance effects takes place in 
the first stage, while estimators of the effects of interest are computed in the second stage. 
This two-stage representation provides a very intuitive insight into the types of adjustment 
involved in mixed model analysis. We found this representation to be particularly useful for 
illustrating adjustments in blocked experiments. In Example 1, the adjustments of the raw 
data when using a mixed model with random blocks are smaller than when fixed block 
effects are fitted because the BLUPs of block effects ( )4,3,2,1=jb j  are shrunk towards zero 
(Table 1). This nicely reflects the recovery of inter-block information effected by taking 
blocks as random. To further illustrate this key point, it is worth considering the two extreme 
cases with respect to the value taken by variance component for blocks ( ) relative to that 

for error ( ). For balanced incomplete block designs, the BLUE of a treatment contrast 
 

2
bσ

2
eσ

∑= i iic µτ ( )0=∑i ic  can be written (Yates, 1940; Mead, 1997) 
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where E  is the efficiency factor ( )10 << E ,  is the block size, and k intraτ̂  and interτ̂  are 
the intra-block and inter-block estimators of the treatment contrast. If the block variance is 
zero ( ), then there is no need for any block adjustments and the BLUE of treatment 
means are equivalent to simple arithmetic means of raw data  for a treatment, 

corresponding to an analysis based on the model without block effect (

02 =bσ

ijy

ijiij ey += µ ). In this 
case, both types of information receive weights depending only on the average efficiency 
factor ( ( ) nteriintracomb EE τττ ˆ1ˆˆ −+= ). Conversely, when the block variance becomes very large 

relative to the error variance ( ∞→22
eb σσ ), and hence the block adjustment is maximal, the 

block effect essentially becomes a fixed effect, because the mixed model equations for blocks 
then coincide with the ordinary least squares equations for the fixed effects model (Searle et 
al., 1992, p.276), meaning that all information is intra-block information ( intracomb ττ ˆˆ = ). In 
practice, when error and block variance are of the same order of magnitude, the block 
adjustment is intermediate, reflecting the optimally weighted combination of inter-block and 
intra-block information. Our proposed method shows that this intermediate nature of the 
combined analysis corresponds to shrinkage of the estimates of block effect estimates. While 
this same insight is hidden in classical equations such as (24), we think that it becomes much 
more transparent by inspecting our equation for the corrected data. 

 
In this paper we have assumed in all examples that ( ) Ie e

2var σ= , which leads to 
ordinary least squares estimates in stage two of our approach in special cases. In some 
applications, such as analysis of repeated measures or spatial analysis of field trials, the 
errors associated with the observational unit have non-zero correlations and so deviate from 
this simple structure. If the residual error has two components, i.e., one that has a spatial or 
temporal correlation structure, and one that represents ‘white noise’ or ‘nugget’ (Piepho et 
al., 2008), then the latter component can be associated with the error term such that 

, while the correlated component is assigned to the random (nuisance) effects 
 or . With these assignments, the same simplified results can be obtained as in the 

examples considered in this paper. 

( ) Ie e
2var σ=

2u u

 
There is an important difference between our approach and the usual method of 

sweeping (De Hoog et al., 1990). For example, in the fixed-effects linear model (13), the 

method of sweeping computes “corrected data” yMyd 2=  with  
to take out the fixed effect 

( ) TT XXXXIM 2
1

2222
−

−=

2β . Then the reduced model is ( ) 112 βXMyE d =  and 

, from which the reduced normal equations for ( ) 2
2var σMyd = 1β  are 

( ) ( ) ( ) ( )yMMMXXMMMX TT
2221112221

−− =β , where  denotes a generalized inverse of 
, which simplifies to  (Searle, 1987, p.263). While this also yields 

the least squares estimator of 

−
2M

2M yMXXMX TT
211121 =β

1β  under the model (13), the corrected data  have different 
expectation than the corrected data  in (14), for which 

dy

cy ( ) 11βXyE c = . The difference arises 
because in our approach we use the full model, and hence both  and  to obtain the 
least squares estimate of 

1X 2X

2β , which is then used to correct the data, whereas the method of 
sweeping only uses  to sweep out 2X 2β . While the method of sweeping has several 
advantages compared to ours, we find it more difficult to use in teaching non-statisticians, 
mainly because the reduced model for  looks more complicated than that for . Also, 
our method allows corrected data to be handled as if nuisance effects had never been there in 

dy cy
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the first place. By contrast, corrected data obtained by sweeping require accounting for the 
correction.  
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APPENDIX 

 

Proof of Proposition 1: 

( ) ( )
( ) ( )[ ]
( )[ ]
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With this result, we find 
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where we have used  and 01 =PX T ( ) 11
1

1
1

1
1

11 XXVXXVXX c
T

c
T =−−−  (c.f. Rao et al., 2008, 

p.218). Thus, 1
~β  and  are identical. Moreover,  1̂β
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