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ABSTRACT

Linear mixed models often comprise several effects, and the focus is usually only on one or a few of them,
while the other effects need to be fitted merely to adjust for all sources of variation. A typical example is
the analysis of a blocked experiment, where the effects of interest pertain to treatments, while effects for
replicates and incomplete blocks need to be taken into account in order to obtain efficient estimates of
treatment effects. If fixed and random effects that are not of major interest were known beforehand, we
could subtract these from the observed data, and a reduced model could then be fitted to these corrected
data in order to estimate the effects of interest. In practice, this approach cannot be used directly, however,
because true values of the effects are unknown. But we may replace unknown effects by their estimates.
We show in this paper, that a reduced model fitted to these ‘empirically” corrected data yields BLUE and
BLUP of fixed and random effects of interest in the full model. Using examples, this result is
demonstrated to be useful for illustrating the recovery of inter-block information and for understanding
the properties of estimators obtained from mixed-model analysis.

Key Words: intra-block analysis; linear model; linear mixed model; recovery of inter-block
information; shrinkage; sweeping.

INTRODUCTION

Linear models can be fitted to data in order to make inferences for effects of interest,
while controlling for other (nuisance) effects that are not themselves of primary interest, but
are important sources of variation. For example, analysis of data from a blocked experiment
can be based on the linear model



Piepho et al. — A two-stage approach to recovery of inter-block information 11

Yy = #; +bj+ey, @)

where Y; is the response of the i-th treatment (i =1,...,1) in the j-th block (j=1,...,J),

4; is the mean of the i-th treatment, b j is the fixed effect of the j-th block, subject to the

J
constraint Zb | = 0, and €; is the random error term associated with Yij assumed to be
i1

independently normally distributed with constant variance Gez . We are interested in making

inferences regarding the treatment means, while block effects need to be accounted for to
represent the randomization layout and to increase precision.

Analysis based on model (1) entails estimating all effects simultaneously and then
deriving inference for effects of interest. In our experience from teaching linear model
concepts, however, many researchers prefer a two-stage view, according to which the data
are first corrected for nuisance effects, and the corrected data, now presumed to be free of
nuisance effects, are then subjected to analysis focusing on the effects of interest. In the
example, if we knew the values of block effects, we could subtract these from both sides of
(1) and then perform an analysis based on the resulting reduced model, which in this case
would boil down to a one-way analysis of variance. In practice, the nuisance effects are not
known but have to be estimated. The purpose of this paper is to show that an analysis of the
corrected data using a model reduced by first accounting for estimated nuisance effects
yields the best point estimates of fixed and random effects of interest, i.e., the best linear
unbiased estimators (BLUE) and best linear unbiased predictors (BLUP), respectively. The
method does not usually provide any computational advantages over the standard
procedures, but we have found it to be useful for teaching purposes because of its intuitive
appeal and interpretive insights. In particular, the method can be used to explain the so-
called recovery of inter-block information (Yates, 1940) in blocked experiments. In this paper,
we first develop the general result in Section 2. This is then applied to special cases in Section
3.

THE LINEAR MIXED MODEL
Consider the linear mixed model (McLean et al., 1991; Searle et al., 1992)

y=Xg+Zu+e, )

where X and Z are known design matrices for fixed effects £ and random effects U,
respectively. The expected values of random effects are E(U) =0 and E(E) =0, the variances
are var(u) =G and var(e) = O'e2 I, and the covariance is COV(U,E) =0, so that
var(y)=V =ZGZ" + o1 . 1t is assumed here that the positive-definite variance-covariance

matrix G and the residual variance 092 are known. We further assume that model (2) can be
partitioned as follows:
XB =X B+ X0, and 3)
Zu=2Zu+7Z,U,, (4)
where var(u,)=G,, var(u,)=G, and cov(u,,u,)=0. We assume here that both X, and
X, have full column rank and that Sp(X): Sp(Xl)u sp(X, ), where Sp(A) denotes the
column space generated by a matrix A. The effects of principal interest are taken to be S,

and U, but the analysis also needs to account for the other effects £, and U,, which are
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themselves not of intrinsic interest. The solution of the mixed model equations pertaining to

p is

. ) 3 C,XT +C, X!
ﬂ:(XTV_lX)lXTV_lyz I?l _ 1171 12 2 _1y’ (5)
B, C21X1T "‘szXzT

(XX, X{vix,)t (c, C

where we have used (X Y 71X) R o o I with A~
XoVEX, X3V 7X, C, C,

denoting the inverse of A. The best linear unbiased estimator (BLUE) of estimable functions

Kp is given by KB (McLean et al., 1991). The best linear unbiased predictor (BLUP) of U is

GzGZTV’l(y— xﬁ):(?l)z[g'lg}vl(y— xﬁ). )

We now consider a two-stage representation of the BLUE and BLUP in (5) and (6),
respectively, in which we correct the observed data for nuisance effects £, and U, in the first

stage. In the second stage the corrected data are used to estimate f;, and U,. The intuition

underlying our approach is that if we knew £, and U,, we could compute the corrected data
Yo =Y =X~ Z,\, (7)
and fit the reduced model

y: =Xy fy +2,u; +e 8)

with var(y: ) =V, =Z,G,Z] +0’1 . In practice, we need to replace the unknown effects f3,

and U, with their estimators, so the corrected data are computed as
Ye =Y = X0, - Z,0,, ©)
where the estimates /3, and U, are obtained from (5) and (6), respectively.

Proposition 1: One may analyse Y, in (9) as if its variance-covariance structure were the

same as that of Y, in (8) under the reduced model. Thus, we may fit the model
Yo = X+ Zu + ¢, (10)

where €, is an error term associated with Yy , as if e, =e. The estimators of £ and U,

under this naive model yield the BLUE of £, and the BLUP of U, under the full model (1),
i.e.,

El = (X;V071X1)71 XlTVcilyc = B\l and (11)
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Gl = Glle Vc_l(yc - Xlﬁl): L'jl . (12)

Thus, the single-stage estimators of £, and U, can be represented in two stages, i.e., we
first compute corrected data Y., removing the estimates of the nuisance effects £, and U,,

and then use the estimators in (11) and (12). A proof of Proposition 1 is given in the
Appendix.
We note here that while equations (11) and (12) yield correct point estimates of effects,

they do not lend themselves for further statistical inference (significance tests or confidence
> _ -1

intervals). For example, the variance of £, is certainly not generally equal to (X TV, 1x1) .

Also, a valid estimate of V_, i.e., an estimate that is equivalent to the restricted maximum

log-likelihood (REML) estimate based on the full model (2), cannot be obtained in the second
stage using standard procedures, because of the approximate nature of the error model.

Thus, an estimate of V, must be available from the first stage. Moreover, in order to remove

p, and U,, we estimate the full model, which already yields direct estimates of £, and U,,

so our method does not provide any computational advantages. Thus, we do not suggest
using this two-stage scheme in practice. The important point to note here is that we may
consider this two-stage scheme not only because it leads to the known best estimators, but
also because it provides some useful insights into the properties of treatment effect
estimators in blocked experiments that are not readily apparent from other methods. This
will be illustrated in the following examples.

SPECIAL CASES AND EXAMPLES

RESULT APPLIED TO A FIXED EFFECTS MODEL
Consider the fixed effects model

y= Xlﬂl+x2ﬂ2 +€, (13)

where the notation follows that used in (1). For example, £, may comprise fixed

treatment effects and £, may comprise fixed block effects in a randomized block experiment
(see eq. 1). We now use corrected data

Y.=Y— Xz:ézf (14)

where ,éz is the ordinary least squares estimator of £, under model (13). Of course, the
distributional properties of Y. in (14) are not identical to those of y—X,f,, but from
Proposition 1, an analysis that naively pretends that they are, does, in fact, yield the BLUE of
B, . Hence, using the corrected data Y, in (14), we fit the linear model

Yo = Xy f +€ (15)

by ordinary least squares, yielding the estimator

ﬁl = (XlTxl)ilxlTyv (16)
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It follows from Proposition 1 that the two-stage estimator in (16) is equivalent to the
BLUE of f, based on (13).

Table 1: Yoghurt tasting raw data (Mead et al., 1993, p.81) and data corrected for estimated
block effects assuming either fixed or random block effects (see Table 2), Yeii) = Yij — b i, and

arithmetic treatment means computed from these corrected data. Fixed effects were
estimated by BLUE, random effect estimates were obtained by BLUP.

Taster

Yoghurt Data 1 2 3 4 Mean
Raw data 8 5 9 7.333

A Corrected - blocks fixed 6.625 6.750 7.500 6.958
Corrected - blocks random 6.750 6.591 7.636 6.992

Raw data 6 2 2 3.333

B Corrected - blocks fixed 4.625 3.750 3.125 3.833
Corrected - blocks random 4.750 3.591 3.023 3.788

Raw data 4 4 3 3.667

C Corrected - blocks fixed 2.625 2.500 4125 3.083
Corrected - blocks random 2.750 2.636 4.023 3.136

Raw data 4 7 4 5.000

D Corrected - blocks fixed 5.750 5.500 5125 5.458
Corrected - blocks random 5.591 5.636 5.023 5.417

Example 1: In order to illustrate our result as applied to a fixed-effects model, we consider
the yoghurt tasting data described in Mead et al. (1993, p.81). The data is reproduced in
Table 1. The experiment was laid out according to a balanced incomplete block design. We
use model (1) for analysis, taking tasters as blocks and yoghurts as treatments. Treatment

means correspond to f;, while block effects relate to f, in model (13). Least squares

estimates for taster effects are given in Table 2. Note that the design matrix X, for fixed

I
block effects has full column rank if we replace the last block effect by b, = —Z b I in
j=1

3
accordance with the constraint ij =0, so that X, has (J —1) linearly independent
=t

columns. The observed data were corrected using Y = Y; —b (Table 1). We fitted the

j
reduced model Y = 4 + € to the corrected data, which boils down to computing the
arithmetic means (i.e.,, simple averages) of the corrected data for each treatment. These
arithmetic means coincide with the adjusted treatment means obtained by directly fitting
model (1), which confirms the general result in Proposition 1. This example lucidly

illustrates, in an intuitive way, the fact that fitting model (1) provides an adjustment for block
effects.
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Table 2: Estimates of taster effects b; obtained from a linear model package. Fixed effects

J

were estimated by BLUE (subject to the constraint Z b; =0), random effects were estimated
i1

by BLUP.

Taster
Effect estimate
1 2 3 4
BLUE 1.375 -1.750 1.500 -1.125
BLUP 1.250 -1.591 1.364 -1.023

RESULT APPLIED TO A MIXED EFFECTS MODEL
Now consider the mixed model (2) and assume that we wish to estimate fixed effects £,

correcting for random effects U. In analogy to the fixed effects case, we will use corrected
data

Yo = y_za/ (17)

where U denotes the BLUP of U based on (2), and fit the following model to the
corrected data:

y. = Xp+e,. (18)

This leads to the estimator

B=(XTX)"XTy,. (19)

From Proposition 1 this estimator is equivalent to the BLUE of £ under the mixed
model (2).

Example 1 (continued): This time, we fit blocks (tasters) in model (1) as random effects in
order to recover the inter-block information (Patterson and Thompson, 1971). Thus,
treatment means pertain to £, while block effects are collected in U of (2). Note that the

J

fixed-effects constraint ij =0 is now replaced by the assumption E(bj)zo for the
[

random block effects. The residual maximum likelihood (REML) estimates of the variance

components for blocks and error are &; =2.5667 and & =0.6833, respectively. We

subtract BLUPs of block effects (Table 2) from the observed response, yielding corrected data

Yeii) = Yij — b;, and then fit a fixed-effects model with effects for treatment means
(Ye(ij) = 4 +€j)) to the corrected data (Table 1). This is equivalent to computing arithmetic

means for Y per treatment and yields treatment means that are identical to BLUE under

the mixed model.



16 Communications in Biometry and Crop Science, 8(1)

It is noteworthy that the adjusted means based on adjustments with random block effects
are closer to the arithmetic yoghurt means than are the adjusted means obtained with fixed
block effects (Table 1). Our approach nicely illustrates that this observation, which generally
holds for analyses of incomplete block designs, can be explained by the shrinkage of block
effect estimates under the random block effects model. The fact that this shrinkage must
reduce the adjustment compared to the fixed block effects model can be seen directly from

the equation for corrected data (Y;)), and it is readily verified by comparing the

adjustments in Table 2.

RESULT APPLIED TO CORRECTION FOR BOTH FIXED AND RANDOM EFFECTS

In Example 1, we considered correction for a fixed or a random nuisance effect, when the
effect of interest is fixed. In more complex models, there may be a need to account for both
fixed and random effects. For example, in a resolvable row-column design, rows and
columns are incomplete blocking units nested within complete replicates. In the analysis, one
may want to correct for fixed effects of complete replicates and for random effects of rows
and columns nested within complete replicates. Using the same definitions as before, we
may write the mixed model as

y=XpB+X,B8,+Zu+e, (20)

where the fixed effects of interest are S, while we want to correct for fixed effects [,
and random effects U. Thus, we compute corrected data

Y. = Y- X,f3, -Z4, (21)

where ,32 and U denote the BLUE of f3, and the BLUP of U, respectively, based on (20).
We then fit the model

Yo = X B, € (22)
by ordinary least squares.

Example 2: Table 3 reports data from a field experiment to test 35 wheat genotypes using a
resolvable row-column design. A complete replicate is subdivided into incomplete rows and
columns. Thus, we have incomplete blocks in both rows and columns. We may either take
rows and columns as fixed (intra-block analysis) or random (combined intra-block-inter-
block analysis with recovery of information). We here chose the latter option.
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Table 3: Design and grain yield data for 35 genotypes of wheat in two replicates with five
rows and seven columns (reproduced from Table 4.16 of Mead (1997, p. 62). § Numbers refer
to genotype IDs.

Design by Genotype ID Yield
Replicate 1
Col-1 Col-2 Col-3 Col-4 Col-5 Col-6 Col-7 Col-1 Col-2 Col-3 Col-4 Col-5 Col-6 Col-7
Row 1 20 4 33 28 7 12 30 377 321 455 409 505 419 327
Row 2 10 14 16 21 31 6 18 344 430 . 386 326 430 372
Row 3 22 11 19 26 29 15 23 349 420 477 256 287 193 226
Row 4 24 25 5 32 2 27 8 3.62 452 423 376 361 3.62 4.01
Row 5 17 9 3 34 13 35 1 381 375 481 369 461 268 415
Replicate 2
Row 1 31 19 25 34 20 8 6 470 737 503 533 573 470 5.63
Row 2 24 21 12 4 23 13 3 407 566 498 404 427 410 475
Row 3 11 7 26 5 35 10 30 566 643 459 520 483 470 4.23
Row 4 33 9 17 18 32 15 2 571 613 4.63 548 547 . 4.16
Row 5 1 27 16 29 14 28 22 522 616 420 466 554 381 3.60

The mixed model used for analysis is

Yik = i 7 0 05 + 6 (23)

where

Yijk = yield of i-th genotype in h-th row and k-th column nested within

j-th complete replicate
M; = mean of i-th treatment

Vi = effect of j-th complete replicate, subject to the constraint Zj 7;=0
Iin = effect of h-th row within j-th replicate; r;, ~ N (O, ol )
Ci = effect of k-th column within j-th replicate; C; ~ N (0, o’ )

€ = residual plot error associated with Yijnc; € ~ N(O,Ue2 )

The REML estimates of the variance components are 5-r2 =0.064, 5'02 =0.192, and

62 =0.090. The adjusted genotype means obtained by a REML-based analysis using the

model (20) are shown in Table 4. The same estimates are obtained by our step-wise approach
as follows:
(i) We first fit (23) to obtain the BLUPs of row and column effects (Table 5) and the

BLUEs of 7; (7, =—7, =-0.611).
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(ii) Using these, we compute corrected data Yjn) = Yij — 7 |~ fjh -C i« (Table 6).
(iii) Computing arithmetic means per genotype for these corrected data, corresponding
to an ordinary least squares fit of the model Y (jn) = 4 + €¢(jjnc), yields the same means as the

adjusted means in Table 4.

Table 4: Adjusted genotype means for wheat data in Table 3 based on model (20).

ID Mean ID Mean ID Mean ID Mean ID Mean
1 4.814 8 4.602 15 3.216 22 4.012 29 3.794
2 3.915 9 4.351 16 3.955 23 3.424 30 3.953
3 5.098 10 4.328 17 4.153 24 3.888 31 3.859
4 3.521 11 4.932 18 4.564 25 4.640 32 4.264
5 4.396 12 4.946 19 5.670 26 3.759 33 4914
6 5410 13 4.682 20 4.319 27 4.670 34 4.298
7 5.085 14 4.765 21 4.594 28 4.294 35 3.602

Table 5: BLUPs of row and column effects (I, and Cj, ) based on model (23) using REML.

Replicate 1 Replicate 2
No Row Column Row Column
1 0.164 0.089 0.168 -0.019
2 -0.113 0.151 -0.305 0.786
3 -0.291 0.137 0.156 -0.197
4 0.148 -0.035 0.149 0.198
5 0.093 0.205 -0.169 0.441
6 -0.384 -0.647
7 -0.163 -0.562

Example 2 (continued): Now assume that the genotype effect is modeled as random and we
want to estimate genotype means. Thus, in model (23), we replace x; with u+ ¢;, where u
is a general mean (fixed) and ¢; is the random effect of the i-th genotype (breeding values),

which can be modeled to be correlated, either using pedigree information, or using marker
data as in genomic selection (Piepho, 2009). In this case, we can make the following

associations with respect to the general model (2): S, = fixed intercept, S, = fixed replicate
effect, U, = random genotype effects, U, = random block effects. Corrected data are
computed by subtracting estimates of replicate and block effects. In stage two, ordinary least
squares is not the preferred method of estimation, because V, # O'e2 | . Instead, we now need
to use an estimate of V_ obtained from the first stage in order to estimate both S, and U, as

per equations (11) and (12).
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Table 6: Corrected data Y(jn) = Yijk — 7 |~ fjh -C i for wheat data in Table 3. Fixed effects

3

(7;) were estimated by BLUE (subject to the constraint Z 7; =0), random effects (I’jh ,C jk)
-1

were estimated by BLUP (Table 5).

Design by Genotype ID Adjusted Yield
Replicate 1
Col-1 Col-2 Col-3 Col-4 Col-5 Col-6 Col-7 Col-1 Col-2 Col-3 Col4 Col-5 Col-6 Col-7
Rowl 20 4 33 28 7 12 30 4129 3506 4.860 4573 5293 5.021 3.881
Row2 10 14 16 21 31 6 18 4.075 4.873 . 4619 3779 5408 4.607
Row3 22 11 19 26 29 15 23 4304 4951 5535 3497 3567 3216 3.325
Row4 24 25 5 32 2 27 8 3.994 4832 4556 4258 3.868 4.467 4.636
Rowb5 17 9 3 34 13 35 1 4240 4117 5191 4244 4923 3582 4831
Replicate 2
Rowl 31 19 25 34 20 8 6 3.940 5805 4.448 4353 4510 4.567 5413
Row2 24 21 12 4 23 13 3 3.782 4568 4.871 3536 3.522 4440 5.005
Row3 11 7 26 5 35 10 30 4912 4878 4.020 4235 3.622 4580 4.025
Row4 33 9 17 18 32 15 2 4968 4.584 4.067 4522 4.269 . 3.962
Row5 1 27 16 29 14 28 22 4796 4932 3955 4.020 4.657 4.014 3.720

DISCUSSION

This paper has shown how mixed model analyses involving fixed and random effects of
interest as well as fixed and random nuisance effects that need to be corrected for can be
represented in a two-stage form, where an adjustment for the nuisance effects takes place in
the first stage, while estimators of the effects of interest are computed in the second stage.
This two-stage representation provides a very intuitive insight into the types of adjustment
involved in mixed model analysis. We found this representation to be particularly useful for
illustrating adjustments in blocked experiments. In Example 1, the adjustments of the raw
data when using a mixed model with random blocks are smaller than when fixed block
effects are fitted because the BLUPs of block effects b i (J = 1,2,3,4) are shrunk towards zero

(Table 1). This nicely reflects the recovery of inter-block information effected by taking
blocks as random. To further illustrate this key point, it is worth considering the two extreme

cases with respect to the value taken by variance component for blocks (O'b2 ) relative to that

for error (o). For balanced incomplete block designs, the BLUE of a treatment contrast
T= Zi C, K (Zi C, = 0) can be written (Yates, 1940; Mead, 1997)

) Ef,. (-E)f,.)/(E 1-E
LN A ] o

2 2 2 2
o, o, +koy o, o, +ko;
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and 2-inter

where E is the efficiency factor (O <E< l), k is the block size, and 7.

intra are

the intra-block and inter-block estimators of the treatment contrast. If the block variance is

Zero (O's =0), then there is no need for any block adjustments and the BLUE of treatment

means are equivalent to simple arithmetic means of raw data Y; for a treatment,

corresponding to an analysis based on the model without block effect (Y; = £ +€;). In this

case, both types of information receive weights depending only on the average efficiency

factor (7o, = E7ya + (1— E)fime, ). Conversely, when the block variance becomes very large

relative to the error variance (o} / o’ — ), and hence the block adjustment is maximal, the
block effect essentially becomes a fixed effect, because the mixed model equations for blocks
then coincide with the ordinary least squares equations for the fixed effects model (Searle et
al., 1992, p.276), meaning that all information is intra-block information (7

~

=7 . In

comb intra )

practice, when error and block variance are of the same order of magnitude, the block
adjustment is intermediate, reflecting the optimally weighted combination of inter-block and
intra-block information. Our proposed method shows that this intermediate nature of the
combined analysis corresponds to shrinkage of the estimates of block effect estimates. While
this same insight is hidden in classical equations such as (24), we think that it becomes much
more transparent by inspecting our equation for the corrected data.

In this paper we have assumed in all examples that var(e)= O'e2 |, which leads to

ordinary least squares estimates in stage two of our approach in special cases. In some
applications, such as analysis of repeated measures or spatial analysis of field trials, the
errors associated with the observational unit have non-zero correlations and so deviate from
this simple structure. If the residual error has two components, i.e., one that has a spatial or
temporal correlation structure, and one that represents ‘white noise” or ‘nugget” (Piepho et
al.,, 2008), then the latter component can be associated with the error term such that

var(e): o1, while the correlated component is assigned to the random (nuisance) effects

U, or U. With these assignments, the same simplified results can be obtained as in the
examples considered in this paper.

There is an important difference between our approach and the usual method of
sweeping (De Hoog et al., 1990). For example, in the fixed-effects linear model (13), the

method of sweeping computes “corrected data” y, = M,y with M, =1-X, (X; X, )_l X3
to take out the fixed effect f,. Then the reduced model is E(yd ): M, X, and
var(yd ) =M 2O'2 , from which the reduced normal equations for f, are
(XM, M5 (M,X,8,)= (XM, M; (M,y), where M, denotes a generalized inverse of
M, which simplifies to X M, X, 8, = X/ M,y (Searle, 1987, p.263). While this also yields
the least squares estimator of S, under the model (13), the corrected data y, have different
expectation than the corrected data Y, in (14), for which E(yc ) = X, p, . The difference arises
because in our approach we use the full model, and hence both X, and X, to obtain the
least squares estimate of f,, which is then used to correct the data, whereas the method of

sweeping only uses X, to sweep out f,. While the method of sweeping has several
advantages compared to ours, we find it more difficult to use in teaching non-statisticians,
mainly because the reduced model for y, looks more complicated than that for y_ . Also,

our method allows corrected data to be handled as if nuisance effects had never been there in
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the first place. By contrast, corrected data obtained by sweeping require accounting for the
correction.
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APPENDIX

Proof of Proposition 1:

Yo =Y =X, B8, - Z,0,
=y =X, (CouXIV Yy + X IV 1Y) 2,G,21V y - X7)
=[1 = (X,Cu XIV T+ X,Cp, XIV )= (v =V, )Py
=P+ (X,C, XTV ™+ X,C, XIV 1) -VP +V,Ply
=X, +V,Py

where

P=V-vIX(XTVEX) XV
=V —V_l(xlcllxlT +X1C12X2T +X2C21X1T "'XZCZZXZT)‘/_1 )

With this result, we find

Xlﬁl = Xl(xlTchlxl)ilxlTVcilyc
= Xl(XlTVC_le)_lXlTVC_l(Xllél +Vc Py)
= X (XVX) XV B = X,

where we have used X, P =0 and Xl(vac’lxl)*l X,V X, =X, (c.f. Rao et al., 2008,

p.218). Thus, El and ﬁl are identical. Moreover,

u, = GlleV;l (yc - Xlﬁl)
= GlleV{l (X 1:3\1 +V, Py - Xlﬁl)
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