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ABSTRACT 
We measured or estimated leaf and root physical and chemical traits of spatio-temporally heterogeneous 
field-grown sugar beet throughout its ontogeny during three growing seasons. The objective was to 
quantify the impact of temporal changes in these traits on root sugar content [S(R); g 100 g-1 root dry 
weight]. Artificial Neural Network (ANN), in conjunction with thermal time (ºCd), adequately delineated 
the boundaries (mean ± standard deviation, S.D.) between S(R) during early (41.6 ± 6.2), med (54.5 ± 3.0), 
and late ontogeny (63.4 ± 2.4), corresponding, respectively to low, medium, and high S(R). Calibration 
and validation Partial Least Squares (PLS) regression models, using plant physical and chemical traits, 
predicted and validated sugar content of sugar beet leaves [S(L)] and roots [S(R)] throughout its ontogeny 
with significant probabilities. Most physical and all chemical traits exhibited dynamic changes 
throughout plant ontogeny and, consequently, negatively or positively impacted S(R). The positive 
impact of S(L) and root volume (RV) on S(R) diminished towards the end of the growing season; 
whereas, the positive impact of root density (RD) and carbon:nitrogen (C:N) ratio in leaves [C:N(L)] and 
roots [C:N(R)] persisted throughout plant ontogeny. Specific leaf area (SLA), in particular, exhibited 
negative, then positive impact on S(R). The utility of physical and chemical traits of field-grown sugar 
beets in building reliable PLS models was confirmed using multivariate analysis on secondary statistics 
(residual mean square errors, RMSE and validation coefficients of determination, Q2) which 
discriminated between and correctly classified low (100%), medium (95%) and high (97%) S(R) groups. 
The findings may have implications to design management practices that can enhance C:N ratio and C-
sequestration in roots, maintain optimum, but not excessive, N level in developing leaves and roots, 
optimize root sugar content and minimize its variation under field conditions. 
Key Words: sugar content; artificial neural network; PLS model; physical plant traits; C:N ratio. 

Abbreviations: Artificial Neural Network, ANN; Carbon (%) in Leaf, C(L); Carbon (%) in Roots, C(R); 
Carbon:Nitrogen ratio in Leaf, C:N(L); Carbon:Nitrogen ratio in Roots, C:N(R); Leaf Area, cm2, LA; Leaf Dry 
Weight, g, LDW; Leaf:Root Dry Weight Ratio, L:R; Nitrogen (%) in Leaf, N(L); Nitrogen (%) in Root, N(R); Plant 
Dry Weight, g, PDW; Root Density, g ml-1, RD; Root Dry Weight, g, RDW; Root Volume, ml, RV; Specific Leaf 
Area, cm2g-1, SLA; Specific Leaf Weight, g m-2, SLW; Sugar content in Leaves, g 100g-1 dry weight, S(L); and Sugar 
content in Roots, g 100g-1 dry weight, S(R).  
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INTRODUCTION 
Approximately 55% of total sugar beet production in the United States is located in 

Minnesota (MN) and North Dakota (ND) (Maung and Gustafson, 2010). Although it is 
predominantly grown for sugar production (Khan, 2008), sugar beet qualifies as an advanced 
biofuel feedstock to produce ethanol with minimal nitrogen requirements and simpler sugar-
to-ethanol conversion as compared to corn. Typical root fresh weight yields in MN range 
from 50-60 Mg ha-1 with 15-19% sugar content (Khan, 2008); whereas, on average, corn 
biomass (stover) and grain yields in the same region range from 7-10 and from 6-8 Mg ha-1, 
respectively (NAAS-USDA, 2010).  

Sugar beet if grown properly does not flower and continues to accumulate sugar 
throughout its ontogeny (Jaggard et al., 2009). However, field-grown and farmer-managed 
sugar beet crops are inevitably heterogeneous populations typically produced by crossing 
parental lines that are not hybrids. Therefore, such populations may not efficiently utilize 
external inputs (i.e., incident solar radiation, N fertilizer, water, etc.) and may not achieve 
their biomass and sugar content production potential (Jaggard et al., 2009; Nouri et al., 2009). 
Potential yield is usually lost in such non-uniform stands because space and resources are 
not efficiently and equally utilized by all plants (Çakmakçi et al., 1998; Jaggard et al., 2009). 
To increase potential yield, it was suggested to either increase the rate at which the foliage 
expands per unit of thermal time (ºCd), or modify management practices so that seedlings 
emerge from soil earlier for a better canopy development, or both (Bloch et al., 2006a; Jabro et 
al., 2009; Jaggard et al., 2009). However, a large number of factors (e.g., N supply, plant 
density, edaphic and weather conditions) may adversely influence canopy development 
(Çakmakçi et al., 1998; Hoffmann and Blomberg, 2004). Most modern varieties usually take 
1050 ºCd from sowing to achieve 90% foliage cover; however, when the linear relationship 
between root dry weight and ºCd is considered (de Reffey et al., 2010), achieving higher root 
and sugar yields in the short-growing season climates of west-central MN (<2,500 ºCd) 
becomes a challenging task.  

The sugar beet plant is unique in that the source (leaves) and sink (root) are anatomically 
directly connected and, therefore, any developmental changes of one have direct and 
immediate impact on the other, and eventually on the sugar content of roots [S(R)] 
throughout ontogeny (Shaw et al., 2002; de Reffye et al., 2010). Leaf growth and 
development, quantified by leaf area (LA), dry leaf weight (DLW), leaf specific area (LSA) or 
weight (LSW), as well as by the ratio of leaf dry weight:root dry weight (L:R) and leaf sugar 
content [S(L)] have direct effects on the growth and development of the root as the storage 
organ (Bloch and Hoffmann, 2005; Hoffmann, 2005). Alternatively, root volume (RV), density 
(RD) and dry weight (RDW) may have positive or negative impact on leaf growth and 
development, and eventually on S(R) (Lawlor, 2002; Launay et al., 2009). Therefore, 
modeling the interrelationships between these variables and their direct and indirect impact 
on sugar content throughout ontogeny may help improve crop management, assist farmers 
to reduce external inputs, and increase potential yield (de Reffey et al., 2010). The objective of 
this study was to quantify the impact of temporal changes in physical and chemical traits of 
leaves and root, and model sugar content in roots of heterogeneous populations of farmer-
managed sugar beet in a major sugar beet growing region of the United States. 

MATERIAL AND METHODS 
FIELD EXPERIMENT 

A common-garden field experiment in a complete randomized design was carried out 
during three years (2006, 2007 and 2009) at three locations in west-central Minnesota, USA. 
Sugar beet (Beta vulgaris) commercial variety was planted at a population density of 15-17 
seedlings m-2, then thinned to ~10 plants m-2 and managed for a target average fresh root 
yield of 55 Mg ha-1 and average sugar content of 18% sugar on fresh weight basis with inputs 

 



Jaradat  & R inke – Modeling sugar content of farmer-managed sugar beets 25 

(fertilizers, herbicides, etc.) and management practices recommended for the region. Random 
whole plant samples (5 plants per sample, location and year) were collected starting at ~150 
Julian days, or about 900 ºCd, and continued until full maturity at harvest time (~ 2,000-2,300 
ºCd, min 5 ºC; 7 samplings yr-1). Each plant was separated into leaves and root, and then 
physical measurements were recorded or estimated on leaves and root of each plant. The 
relationship between S(R) and Log10(ºCd) was used as an initial guide to classify S(R) data 
into those with low, medium and high sugar content during the growing season. 

PHYSICAL MEASUREMENTS 
Separate digital images of each root and its leaves, with a scale photographed in each 

image, were taken using a Nikon SLR digital camera with high resolution, and then images 
were converted to 8-bit binary (gray scale) format using the software package ImageJ 
(Rasband, 2010). The 8-bit images were used to calculate number and area of leaves, and root 
dimensions. Root and leaf samples at each sampling date were dried at 45 ºC for 170-200 
hours to a constant dry weight and the following physical traits were recorded or calculated 
for each sample: total plant dry weight, total leaf dry weight, total leaf area, leaf specific 
weight, leaf specific area, root dry weight, root volume, root density, and leaf:root dry 
weight ratio.  

CHEMICAL ANALYSIS 
Carbon and nitrogen were determined at each sampling date on leaf and root sub-

samples using a LECO FP-428 analyzer (LECO, St. Joseph, MI), then the C:N ratio was 
calculated. Sugar content (sucrose, glucose and fructose) was determined using leaf and root 
sub-samples and expressed as g of total sugars per 100 g of leaf or root dry weight. The sugar 
content determination followed the procedure outlined in Hendrix (1993).  

STATISTICAL ANALYSIS 
Statistical moments (mean, S.D.) were estimated for all physical and chemical traits, 

including sugar content in leaves and roots, and then used for subsequent estimation of 
secondary (i.e., derived) statistics and model coefficients. A Multilayer Perception (MLP) 
Artificial Neuron Network (ANN) with 17[input]-10[hidden]-1[output] neurons (StatSoft, 
2010) was used to classify the sugar content of sugar beet roots into three broad categories 
(low, medium and high) based on a matrix of 17 physical and chemical traits measured on 
plants, leaves and roots of 103 samples during three growing season. Mean and S.D. of sugar 
content in roots, and the corresponding statistics in leaves for each category are presented in 
Fig. 1. 

MODELING APPROACH 
Partial Least Squares (PLS) regression models were developed to predict S(R) in each 

category (i.e., low, medium and high sugar content) of samples identified through ANN 
analyses. Statistics of the calibration (R2) and validation (Q2, regression coefficients, and 
loadings of independent variables on the first partial least squares regression component, 
PLSC1) models were plotted in one dimension for each category to visualize the quantitative 
relationships between independent and dependent variables, and relationships between 
independent variables. The one-dimensional plots were used to identify trait dynamics 
throughout the growing season and how they impacted S(R). The validation procedure was 
performed by building a calibration model using 75% of data points and then deploying the 
model to predict the remaining 25% (StatSoft, 2010). 

An estimate of the model intercept (βo) and the residual mean squares error (RMSE), in 
addition to the validation coefficient of determination (Q2) of each PLS model were plotted 
for the leaf and root low-, medium-, and high-sugar content categories. Loadings of 
independent variables (physical root and leaf traits, C:N ratios in roots and leaves, or both, 
along with correlation coefficient between RMSE and each of βo and Q2, in each case were 
listed as indicators of trait dynamics throughout the growing season. Finally, a matrix of 
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RMSE and Q2 estimates derived from the PLS models for S(L) and S(R) in each of the low, 
medium and high S(R) categories was used in a discriminant analysis to verify the initial 
ANN-MPL classification, and to validate the use of physical and chemical traits in building 
reliable PLS models for field-grown sugar beets.  
 
 

 
 
Figure 1. Descriptive statistics [mean and (S.D.)], univariate relationships and predictive 
equations between sugar content in leaves, S(L), and roots, S(R) in g 100 g-1 of leaf (LDW) 
and root (RDW) dry weight, respectively, during early (low sugar content), med (medium 
sugar content), and late (high root sugar content) ontogeny of sugar beets sampled during 
three growing seasons.  

RESULTS 
ROOT SUGAR CONTENT AND ONTOGENY 
A Partial Least Squares (PLS) regression model described S(R) throughout the growing 
season as a function of S(L) as follows: 
 
Y = 38.02+1.76 x S(L); R2 = 0.4; P < 0.05       (1) 
 
However, when Log10 thermal time [Log10(ºCd)], S(L), and their interaction during the 
growing season, were included, the validation PLS model accounted for 60% of variation in 
S(R) [Q2 = 0.60; P < 0.05], as follows:  
 
Y = 38.5+1.754xS(L)+0.31xLog10(ºCd)-2.9xS(L)xLog10(ºCd)   (2) 
 
The PLS model in (2) suggests that S(L) and ºCd have positive impacts on S(R); however, as 
the growing season progressed, the interaction between these two factors tended to cause a 
decrease in S(L). The two-way dependency of S(R) on S(L) and ºCd is supported by a strong 
multiple correlation (r = 0.75; P < 0.0001) found between S(R) and both predictors in (2) 
above.  
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ANN CLASSIFICATION 
The Multilayer Perception (MLP) Artificial Neural Network (ANN), with 17[input]-
10[hidden]-1[output] neurons, classified the whole data set into three S(R) categories (i.e., 
low, medium and high) based on a matrix of 17 physical and chemical traits measured on 
plants, leaves and roots of 103 samples during three growing season. The R2 values for the 
training, testing and validation samples were 89.7, 88.0 and 85.5, respectively, indicating that 
the classification, as reported in Fig. 1 was confirmed with large level of accuracy. 
Descriptive statistics [low (41.6 ± 6.2), medium (54.5 ± 3.0), and high (63.4 ± 2.4 g 100g-1 dry 
weight) S(R)] and sample distribution based on the relationship between sugar content in 
leaves and roots of the three categories (Fig. 1) suggest that the relationship estimated by R2 
of PLS regression models, declined, and eventually disappeared at the end of the growing 
season. The overlap between the medium and high root sugar content categories (and the 
corresponding sugar content in leaves) was evident almost throughout the growing season. 
However, when the whole growing season was considered, a significant relationship (R2 = 
0.40; P < 0.05) was found between sugar content in leaves and roots.  

PLS MODELS FOR INDIVIDUAL S(R) CATEGORIES 
The PLSC1 calibration (R2 = 0.86; P < 0.01) and validation (Q2 = 0.81; P < 0.01) models 
accounted for most of the variation in the “Low” S(R) category (Fig. 2A). Most physical traits 
loaded positively and were significantly correlated with PLSC1. However, C(L) although 
had a positive impact on S(R), and unlike C:N(L), C:N(R) and C(R), was not significant; 
whereas both N(L) and N(R) had negative impacts on S(R) at this stage. Specific leaf weight 
(SLW), and L:R, unlike other leaf and root traits, loaded negatively on PLSC1 and, 
presumably, contributed to low S(R). Leaf area, SLA and LDW were closely related to each 
other and, based on their similar loadings on PLSC1, closely linked to RDW, RV, and, to a 
lesser extent, RD. Finally, S(L) and RD, although were positively correlated with PLSC1, their 
positive regression coefficients were not significant. The following explanatory variables had 
significant regression coefficients in the PLSC model (Fig. 2A), in predicting S(R) in the 
“early-season, low-sugar content” S(R) category: 
 
Y = 33.0+2.5e-03xPDW+5.1e-04xLDW+1.3e-03xLA-9.3e-4xSLA+1.97e-03xSLW-3.9e-

05xL:R+2.04e-03xRDW+7.9e-03xRV-1.7e-05xN(L)+3.75e-05xC:N(L)-1.9e-05xN(R) +2.5e-
05xC(R)+3.6e-04x C:N(R)       (3) 

 
In the “Medium” S(R) category (Fig. 2B, middle panel), the PLSC1 calibration (R2 = 0.69; P < 
0.01) and validation (Q2 = 0.46; P < 0.01) models accounted for a smaller portion of the 
variation. At this stage in the ontogeny of sugar beets, most physical and chemical traits 
loaded on PLSC1 in a similar manner as they did on PLSC1 of the “Low” S(R) category; 
however, C(L) had negative, but not significant, impact on S(R). Also, a larger portion of the 
variation in S(R) was unaccounted for by model (4, see below) as compared with model (3). 
In addition, a larger gap (0.23) was found between the calibration (R2 = 0.69) and validation 
(Q2 = 0.46) models in this case as compared to a much smaller gap (0.05) found for the “Low” 
S(R).The following explanatory variables had significant regression coefficients in the PLSC 
model (Fig. 2B), describing root sugar content (Y) in the “med-season, medium-sugar 
content” S(R) category: 
 
Y = 52.3+2.9e-05xPDW+1.06e-05xLDW+6.06e-04xLA-1.2e-05xSLA+1.4e-05xSLW-4.8e-

07xL:R+1.85e-05xRDW+1.01e-04xRV-1.8e-07xN(L)+4.7e-07xC:N(L)-1.9e-07xN(R)+1.6e-
07xC(R)+4.7e-6xC:N(R)       (4) 

 
The PLSC1 calibration (R2 = 0.82; P < 0.01) and validation (Q2 = 0.56; P < 0.01) models 
accounted for an intermediate portion of the variation in the “High” root sugar content 
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category (Fig. 2C) as compared with the “Low” and “Medium” sugar categories. The 
following explanatory variables had significant regression coefficients in the PLSC model, 
describing root sugar content (Y) in the “late-season, high-sugar content” S(R) category: 
 
Y = 62.3-3.4e-04xPDW-1.47e-04xLDW+3.2e-04xLA+1.4e-04xSLA-1.5e-04xSLW-2.6e-04xRDW-

1.6e-03xRV+9.5e-08xRD-3.3e-06xN(L)+3.4e-06xC(L)+1.9e-05xC:N(L)+ 2.2e-06xC(R)+7.5e-
05xC:N(R)       (5) 

 

 
Figure 2. Mean and (coefficient of variation), calibration (R2) and validation (Q2) model 
coefficients and loadings (i.e., correlation coefficients between variables and the first Partial 
Least Squares Regression Component, PLSC1; Y-axis) of physical and chemical traits 
measured on plant, leaves and root of sugar beet with low (41.6  ± 6.2 g 100g-1 root dry 
weight; A), medium(54.5  ± 3.0 g 100g-1 root dry weight; B), and high (63.4  ± 2.4 g 100g-1 
root dry weight; C) sugar content in roots on PLSC1 [see Abbreviations for trait name and unit 
of measurement; an “*” denotes a significant ( P < 0.05) impact of a trait on S(R)].  
 
Three variables, [S(L), L:R, and N(R)], had negative, but not significant impact on S(R) in the 
“High” S(R) category. In addition, 50% of the remaining variables tended to cause a decrease 
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in S(R) at this stage. Of significant importance are C(L), C(R), C:N(L), and C:N(R) as positive 
determinants of S(R).  

PHYSICAL AND CHEMICAL TRAIT DYNAMICS 
Secondary statistics (i.e., RMSE, βo, Q2 and loadings of physical and chemical traits on PC1) 
for the low-, medium-, and high-S(L) (Fig. 3A) and for the low-, medium-, and high-S(R) 
(Fig. 4), and the correlation coefficients between RMSE and each of βo and Q2 confirm trait 
dynamism for most, but not all, traits throughout ontogeny. The first principal component 
(PC1) accounted for 69, 71, and 43% of variation in 10 physical and two chemical traits of the 
low-, medium, and high-S(L) categories, respectively. Loadings of five physical traits (PDW, 
LDW, RV, RDW, and L:R ratio) remained relatively stable throughout ontogeny (Fig. 3A); 
whereas, loadings of S(L), LA, SLW, SLA, C:N(L), and C:N(R) showed medium to large 
levels of decline, especially late in ontogeny.  

Estimates of RMSE and their correlation with βo differed as to the S(L) category and the 
composition of independent traits used in developing the respective PLS models. RMSE 
estimates were slightly larger for the medium- as compared with the low-S(L) category and 
whether physical, chemical or both trait sets were used to estimate PLS model coefficients. A 
large increase in RMSE estimate was observed for the high-S(L) category. Nevertheless, 
negative and significant relationships were found between RMSE and βo, the strongest of 
which (r = -0.86; P < 0.001) was found for the high-S(L) category.  

Notwithstanding the loadings of physical and chemical traits on PC1 (see above), a 
gradual decrease in the validation Q2 for S(L) was observed as sugar beet plants approached 
maturity and a concomitant change in some leaf and root physical and chemical traits. 
Correlation coefficients between RMSE and validation Q2 (Fig. 3B) were small and non-
significant for low-S(L) and high-S(L), but not for the medium-S(L) category (r = 0.66; P < 
0.05). Very little, if any, impact is evident on the magnitude and trend of the relationship 
between RMSE and validation Q2 whether physical, chemical, or both groups of traits were 
used as predictors.  

The gradual increase in βo, as a natural consequence of increasing S(R), and the 
concomitant decrease in RMSE of S(R) is statistically supported by the declining negative 
relationship between these two model parameters from -0.78 ( P < 0.001) for the low-S(R), to -
0.62 ( P < 0.05) for the medium-S(R), and finally to -0.50 ( P < 0.05) for the high-S(R) 
categories (Fig. 4A). Independent variables displayed medium to large levels of dynamism as 
quantified by their loadings on, and the amount of variation accounted for by PC1 in 
different S(R) categories; however, they did not substantially affect the magnitude and the 
relationship between RMSE and βo.  

A significantly stronger and negative relationship was found between RMSE and Q2 for 
all three S(R) categories (-0.96; P < 0.0001) (Fig. 4B). The impact of physical traits on S(R) 
estimates declined dramatically as sugar beet plants approached maturity. However, the rate 
of decline (i.e., change in Q2 value) was smaller when C:N(L) and C:N(R) alone or in 
combination with physical traits were used as S(R) predictors.  

DISCRIMINATION BETWEEN S(R) CATEGORIES 
The discriminant analysis resulted in almost total separation and correct classification of 
100% of low-, 95% of medium-, and 97% of high-S(R) categories based on secondary 
statistics. The largest Mahalanobis squared distance (D2 = 49.6; P < 0.0001) was found 
between the low- and high-S(R) categories, followed by D2 (39.4; P < 0.001) between low- and 
medium-S(R); whereas, the shortest, albeit significant, distance (D2 = 22.1; P < 0.005) was 
found between medium- and high-S(R). The first of two canonical discriminant functions 
(CANDISC-1) accounted for 0.72 of total variation and separated the low- from medium- and 
high-S(R) categories; whereas, the second discriminant function (CANDISC-2) accounted for 
the remaining 0.28 of total variation and separated the medium- and high-S(R) categories 
from each other. 
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Three secondary statistics [RMSE and Q2 of S(L), and Q2 of S(R)] had decreasing 
negative standardized coefficients on CANDISC-1; whereas, RMSE of S(R) had a positive 
standardized loading. The three secondary statistics [RMSE of S(L), Q2 and RMSE of S(R)], all 
had positive standardized coefficients on CANDISC-2.  

 
 

  
Figure 3. Leaf-based relationships (r- values) between secondary statistics (residual mean 
squares error, RMSE and each of validation coefficient of variation, Q2, and partial least 
squares regression intercept, βo) of sugar content (g 100g-1 dry matter), and loadings on the 
first principal component (PC1) derived from plant, leaves, and root physical and chemical 
traits of sugar beet with low, medium, and high root sugar content. 

DISCUSSION 
ROOT SUGAR CONTENT AND ONTOGENY 

A reasonably large portion of variation (Q2 = 60%) in S(R) under the short growing 
season of west-central MN was accounted for by S(L), thermal time, and their interaction. 
The power of S(L) in accounting for variation in S(R) declined over time and disappeared 
altogether at the last sampling dates (Fig. 1) indicating that there is no feedback inhibition or 
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sink limitation to store sugar in the developing storage roots (Launay et al., 2009). However, 
the negative regression coefficient (-2.9; Equation 2) of S(L) x Log10(ºCd) suggests that ºCd, 
in particular, may become a limiting factor late in ontogeny under short growing seasons (de 
Reffey et al., 2010). Therefore, to increase potential biomass and S(R) yields, new 
management practices that allow for early seedling emergence, uniform population density, 
and high N use efficiency (Hoffmann, 2005; Jaggard et al., 2009); and new varieties that can 
achieve ~90% foliage cover at lower thermal time (~850 ºCd) are needed (de Reffey et al., 
2010). 

VALIDATION PLS MODELS  
The apparent differences between calibration (R2) and validation (Q2) coefficients of 

determination (Fig. 2) within and between S(R) categories are caused, for the most part, by 
the dynamic variation (expressed as C.V.) in physical and chemical traits throughout 
ontogeny. The steady increase in S(R) was associated with decreasing variation (S.D.) over 
time. This trend may suggest that the source, expressed as a negative and significant impact 
of SLA (Fig. 2A and 2B), could have been a limiting factor (Hoffmann and Blomberg, 2004; 
Kenter and Hoffmann, 2006). In addition, the declining L:R ratio (from 0.78 to 0.35, Fig. 2) 
may have contributed to this trend, knowing that most leaf weight in late ontogeny is 
attributed to petioles that can be considered as a sink (Launay et al., 2009) The sink 
components (i.e., RV, RDW and RD) were not limiting throughout ontogeny, although their 
C.V. values fluctuated over time, with RD being most stable and exhibited an increasingly 
positive impact on S(R). The decoupling of RD from each of RDW and RV, and the declining, 
albeit significant, impact of the last two sink components on S(R) late in ontogeny may offer 
the opportunity to overcome the physiologically-determined negative relationship between 
RDW and S(R) (Hoffman, 2005). 

Nitrogen in leaves and roots, although declined in magnitude and increased in 
variability over time, had negative and mostly significant impact on S(R); this trend may 
have implications for N nutrition and management under field conditions (Hoffmann, 2005; 
Jaggard et al., 2009). However, in view of the more constant (~41%) and stable (C.V. 1.3-
2.4%) carbon in roots, the C:N(R) ratio displayed an increase in magnitude (from 26.5 to 58.4) 
and variation (C.V. 19 to 50%) throughout ontogeny. The C:N ratios in leaves and roots, both 
of which had positive and significant impact on S(R), may directly impact S(R) through dry 
matter partitioning (Hoffman, 2005) and indirectly due to the linkage between N and 
carbohydrate metabolism (Lawlor, 2002).  

PHYSICAL AND CHEMICAL TRAIT DYNAMICS 
The dynamics of leaf and root development and their impact on root sugar content were 

adequately described by PLS regression models. Model coefficients (Equations 3-5) can 
contribute to the development and validation of potentially widely applicable 
morphogenetic model for sugar beet growth and production (de Reffey et al., 2010). Several 
trait (Fig. 2) whether they have static (e.g., RDW, RV), dynamic (e.g., LA, SLA and SLW), or 
decreasing loadings on PC1 over time [C:N(L) and C:N(R)] could be manipulated through 
novel management practices (Çakmakçi et al., 1998; Nouri et al., 2009; Jabro et al., 2010), 
plant nutrition (Shaw et al., 2002), or plant breeding and selection (Jaggard et al., 2009; de 
Reffye et al., 2010) for better resource utilization and sugar production. 

The quantitative relationships between secondary statistics (i.e., model intercept, β, 
residual mean squares error, RMSE, and validation coefficient of determination, Q2) for S(L) 
and S(R) (Fig. 3 and 4, respectively) provide some insights into the overall functioning of leaf 
and root physical and chemical traits, or both, and their ability to predict S(L) and S(R) over 
time. The most ideal combinations are to have PLS validation regression models with low 
RMSE and high Q2 associated with high β values, especially when predicting S(R). These 
conditions were partially met for S(L) where small RMSE and high β values were associated 

 



Communicat ions in B iometry and Crop Sc ience, 7(1)  32 

during mid-season [i.e., medium S(L) category] (Fig. 3A), and where small RMSE and 
medium Q2 values were associated early in ontogeny [i.e., low S(L) category] (Fig. 3B). 

The lack of an ideal combination of all three secondary statistics can be explained on the 
basis of their biometrical relationships (r-values) throughout ontogeny. The relationships 
were not stable between RMSE and β, and mostly non-significant between RMSE and Q2 
when predicting S(L) (Fig. 3A and B). On the other hand, they were negative and decreased 
in magnitude between RMSE and β; and remained strongly negative between RMSE and Q2 
when predicting S(R) (Fig. 4A and B). Nevertheless, these secondary statistics, after 
removing β for obvious biometrical reasons, clearly discriminated between the three S(R) 
categories (Fig. 5). 

 

 
 
Figure 4. Root-based relationships (r- values) between secondary statistics (residual mean 
squares error, RMSE and each of validation coefficient of variation, Q2, and partial least 
squares regression intercept, βo) of sugar content (g 100g-1 dry matter), and loadings on the 
first principal component (PC1) derived from plant, leaves, and root physical and chemical 
traits of sugar beet with low-, medium-, and high-S(R).  
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Figure 5. Discriminant analysis of sugar beet roots with low-, medium-, and high-S(R) 
sampled during three growing seasons and based on secondary statistics, followed by their 
standardized coefficients, and derived from plant, leaves and root physical and chemical traits. 

 

CONCLUSIONS 
Field-grown sugar beet crops are usually composed of highly heterogeneous plant 

populations due to complex interactions of variety, management practices, and edaphic 
factors with intra- and inter-annual weather variability. We used easily measured, or 
estimated, physical and chemical traits on leaves and roots of field-grown, farmer-managed 
sugar beet. We constructed models to help predict sugar content and identify which traits 
may have positive or negative impact on it in the developing roots throughout three growing 
seasons. During early growing season (< 170 Julian days), most leaf and root traits exhibited 
large (50% < C.V. < 70%) variation; whereas their carbon:nitrogen (C:N) ratios were less 
variable (C.V. < 20%); however, all had significant impact on root sugar content. During mid-
growing season (180 < JD < 220; Julian days), root traits became increasingly more important 
than leaf traits in impacting root sugar content, displayed larger variation (70% < C.V. < 
100%) and maintained a significant impact on root sugar content; however, their C:N ratios 
were less variable (C.V. 13.5-35%) and maintained a positive and significant impact on root 
sugar content. During late-growing season, leaf and root traits maintained the same trends 
and displayed larger variation; whereas their C:N ratios, although became more variable 
(C.V. 37-50%), they increased in magnitude and had stronger impact on root sugar content. 
The findings may have implications for farmers and agronomists to design management 
practices that can enhance carbon sequestration in roots, maintain an adequate, but not 
excessive, level of nitrogen in developing leaves and roots and minimize the variability in 
root sugar content. 
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