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ABSTRACT 
Visualizing genotype-by-environment interaction in the case of several attributes, a situation 
that is often dealt with in plant breeding, is discussed in the paper. The parallel coordinate 
plot is proposed as an efficient tool for such visualization. Various applications of this type of 
graph are presented for across-environment and environment-wise plotting, thereby offering 
rich information about genotypes’ performance. It is shown how one can analyze the data 
and report the results by means of the parallel coordinate plots. 
Key Words: adaptability; genotype selection; genotype-by-environment interaction; visualization. 

INTRODUCTION 
Parallel coordinate plots (PCPs) are an efficient tool for visualizing multivariate data 

(Inselberg, 1985; Wegman, 1990). They have been used in various research areas, although 
environmental and agricultural applications are rather scarce; for example, Andrienko and 
Andrienko (2001) applied PCPs for exploring spatial data, and Villamil et al. (2008) for 
analyzing soil quality data. Taking into account what interpretation possibilities this type of 
plot offers, it may be useful in multivariate genotype selection. 

Genotype selection in the case of multiresponse data is not an easy matter. Regular 
statistical analyses provide a basis for such selection, but visualization may offer additional, 
very powerful tools. Univariate data (e.g., yield of genotypes in one environment) are easy to 
analyze, and the best genotypes are easy to select. However, with additional dimensions, for 
example many environments and many attributes, such data become very difficult to study. 
For such selection, multivariate selection indices might be used (Brown, 1988), but any index, 
as a single number, cannot provide detailed insights into the genotypes’ performance—when 
choosing promising genotypes for inclusion in breeding programs, plant breeders choose the 
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best genotypes as well as those which may introduce some interesting attributes to the 
breeding pool. The latter group of genotypes might be lost if one would base only on 
multivariate selection indices (although the indices can be used with various criteria, in that 
way providing more numbers than just one—so again, the data become complex to analyze).  

For bi-dimensional data (genotypes × attributes), biplot-based approaches can be 
applied. In the case of three-dimensional data (genotypes × environments × attributes), 
combinations of bivariate plots can be used (e.g., Manson et al., 2008) to support 
interpretation and genotype selection. Three-mode principal component analysis 
(Kroonenberg and Basford, 1989) supported by a so-called joint biplot has been used to study 
the relationships among genotypes, environments and attributes (e.g., Bertero et al., 2004; 
Varela et al., 2006; D’Andrea et al., 2008). However, interpretation of the three-mode PCA is 
not easy. Kozak et al. (2008) proposed a multivariate selection of promising genotypes based 
on joint cluster and path analyses, but this approach does not facilitate seeing the genotypes’ 
performance in terms of all the attributes. Gupta et al. (2009) showed how intuitive selection 
can be made in the case of three-dimensional data attribute × genotype × year; this method 
nevertheless pictures only bi-attribute performance of the genotypes, not accounting for 
multi-attribute ones. Basford and Tukey (1999) describe techniques for graphing 
multiresponse data, most of which are based on performance plots and scatterplot matrices.  

In this paper it is shown that a parallel coordinate plot can be a very useful tool for 
selection of interesting genotypes in the case of many attributes of interest. What an 
“interesting genotype” is in the case of multiresponse data depends on how a breeder 
understands it and what the breeding program is aimed at; in fact, PCPs give space for 
various such understandings and aims. PCPs can be used at the analysis stage of the 
breeding research, which aims to select promising genotypes, and at the presentation stage, 
which aims to communicate the results of the analysis.  

MATERIALS AND METHODS 
PLANT MATERIAL 

The data come from a two-year plant breeding experiment on soybean, conducted in 
four locations (Mungomery et al., 1974), which are given in Basford and Tukey (1999). For 
the present paper, 15 early genotypes (labeled with numbers 44-58) were chosen, studied in 
eight environments being the combinations of locations Brookstead, Lawes, Nambour and 
Redland Bay (Australia) and years 1970 and 1971. We will consider the following attributes: 
plant height (m), lodging (%), oil (%), protein (%), quality index (oil + protein, both in %), 
seed size (g/100), seed yield (t/ha), protein yield (t/ha), oil yield (t/ha), and economic yield 
(protein + oil yield, in t/ha). The value for a particular genotype in an environment is the 
mean value from two blocks. Basford and Tukey (1999) discuss the experiment in detail.  

PARALLEL COORDINATE PLOT 
The construction of a PCP is easy. Each attribute is represented on the x-axis and has its 

own y-axis; the y-axes are parallel, have the same length, and start with a minimum of the 
corresponding attribute and end with its maximum. (In fact, quite often the plot is rotated so 
that the attributes are presented on the vertical axis.) Note thus that when a particular 
genotype is placed in the middle of a y-axis, it does not mean that its value is around the 
mean of the corresponding attribute—it is the middle point within the attribute’s range. For 
a particular genotype, the points on the adjacent y-axes are joined by a line, thereby picturing 
a multidimensional characterization (profile) of the genotype. Since many genotypes are 
plotted on the same PCP, a particular genotype’s performance can be seen against a 
background of the whole pool of genotypes studied. One can (but does not have to) include 
in the plot the minimum and maximum values of the attributes.  

An important issue concerned with PCPs is the order of attributes on the x-axis. As Huh 
and Park (2008) indicate, the relationships between variables in non-adjacent positions are 
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difficult to figure out. One can draw all possible PCPs for a data set (it can be quite a large 
number—see Wegman, 1990) and choose those that offer the most interesting information; 
alternatively, one can apply some ordering of the variables (e.g., Hurley, 2004). However, 
note that these rules aim to support discovering multivariate relations among the variables, 
while in our problem the aim is to select promising genotypes and interpret their 
performance against the background of all genotypes. Thus several other rules might be 
considered useful in choosing this order for the genotype selection. The last attribute should 
be the most economically important one (e.g., oil, protein or economic yield in our example), 
if there is such. Attributes that are somewhat related or the relation of which may be 
interesting (e.g., oil and protein content, depending on the analysis’s aim) should be placed 
adjacently. If possible, attributes may be ordered by the order of their development during 
plant ontogeny (see, e.g., Mądry et al., 2005). If there are several orderings that could be 
followed according to the above rules, one should try all of them and choose those which 
offer the most interesting information. What one considers interesting depends on the aim of 
the selection—but to make PCPs useful, all attributes used for plotting should be interesting. 
If an attribute is not used in interpretation at all, it should be removed from the plots. 

Such a general interpretation of data (Wegman, 1990), which may include grouping of 
genotypes and correlations among attributes, should constitute a first stage of the analysis. 
For multi-environment data, the PCP should be constructed for means of the attributes 
across environments. This provides the overall (across-environment) profiles for the 
genotypes. This interpretation should be supported by other tools for interpreting 
multivariate data, for example the scatterplot matrix (Cleveland, 1994). PCPs based on 
attribute means from environments will be hereafter called the across-environment PCPs. 

Next one can look for interesting genotypes by constructing an across-environment PCP 
for each genotype in such a way that this genotype is drawn with a black line while the 
remaining genotypes are drawn with a grey line. Hence there will be as many plots as there 
are genotypes. In that way one can search for genotypes with some interesting features in a 
multivariate sense (e.g., these can be high oil and protein content, providing high quality 
index, with small lodging). We need to remember at this stage that the across-environment 
PCPs ignore the genotype-by-environment interaction that is very likely to be present in 
multiresponse multi-environment data. Still they can provide a general picture of genotypes, 
which is an important aspect of genotype selection. 

A next stage, thus, should take into account the genotype-by-environment interaction, if 
it is indeed present in the data. For each genotype there will be as many PCPs as there are 
environments; such PCPs will be hereafter called the environment-wise PCPs. Thus at this 
stage there will be E×G PCPs, E being the number of environments and G the number of 
genotypes. This interpretation can be supported with a scatterplot matrix constructed for 
each environment. The plots for each environment should be ordered by an increasing value 
of one of the attributes (the most interesting one, economic yield in our example); this 
ordering should be made from left to right and from bottom to top (following the standard 
ordering in trellis displays—see Cleveland, 1994). Of course, this stage is very demanding for 
an analyst, but intensive interpretation cannot be avoided when there are many attributes, 
many genotypes and many environments. However, one can limit this stage to those 
genotypes that were selected as interesting based on across-environment PCPs. It is 
important to note that for a given genotype, a PCP for each environment is presented for 
environment-wise ranges of the attributes. Hence the environment-wise PCPs are not 
comparable among environments, although of course environment-wise PCPs for two 
genotypes in one environment are comparable.  

The last stage is presentation of selected genotypes. An across-environment PCP for this 
still should include coordinates for all genotypes, but this time those selected as promising 
are drawn in black while those non-selected in grey. If there are too many selected genotypes 
to include in one PCP to make them easily distinguishable, they can be drawn on two (or 
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more) adjacent PCPs; some grouping may be applied here so that each PCP contains 
emphasized genotypes that are characterized by particular features (the background grey 
lines should present all genotypes except those emphasized on this PCP). If needed, such an 
across-environment PCP can be supported by chosen environment-wise PCPs. 

All plots were drawn with R (R Development Core Team, 2009): the parallel coordinate 
plots using the parcoord() function of the library MASS (Venables and Ripley, 2002), while 
the scatterplot matrix using the splom() function of the library lattice (Sarkar, 2009). 

RESULTS 
Figure 1 shows an across-environment PCP for the 15 genotypes and all attributes of 

interest, while Figure 2 a scatterplot matrix for the same data. In Figure 1 minimum and 
maximum values are included for all the attributes; note that these values are minimum and 
maximum genotype means over environments (so they do not describe the minimum or 
maximum attribute values that were obtained in the experiments). Note also that the 
scatterplot matrix constructed for each environment might differ from that in Figure 2. From 
these figures it seems that most attributes were diverse, but worth noting is quite small 
diversity of quality index—it ranged between 59.6 and 63.4, showing that the genotypes 
were quite similar in terms of this attribute. 
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Figure 1. Parallel coordinate plot for 15 soy bean genotypes and all traits of interest. 
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Figure 2. Scatterplot matrix for 15 soybean genotypes and all traits of interest. A point 
represents the means for the two corresponding traits across the eight environments. 

 
Some other interesting general conclusions follow from these two plots. Protein, oil and 

economic yields were determined mainly by seed yield and were extremely strongly 
correlated (indeed, all Pearson’s correlations among these four attributes are above 0.996). 
For this reason in genotype-wise plots we could leave out three of these four attributes. Since 
economic yield is the final attribute of interest, we could keep it, but in further analysis and 
interpretation we would have to keep in mind that seed yield is most important in 
determining economic yield, and quality index in fact seems to have no influence on it—
which follows from Figure 2 (quality index does not influence economic yield while seed 
yield determines it almost totally). Nonetheless, for the purpose of the present paper it will 
be better to keep all the attributes in the plots. 

Taller the plants tend to suffer more from lodging. A negative though rather weak 
relationship between oil and protein content was observed. Economic yield increased with 
an increase in oil content, seed yield, and protein and oil yield; it was related to neither 
protein content nor quality index. Lodging did not determine economic yield; in fact, 
genotypes with the highest seed yield and economic yield had the highest lodging. 
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After this general analysis, the second step follows, in which each genotype has its own 
across-environment PCP. See Figure 3 for the genotype-wise across-environment PCPs for 
genotypes 48, 49, 50 and 51 (for space reasons PCPs for all 15 genotypes are not presented). 
Note that here we need no maximum and minimum attribute values because they were 
already given in the previous PCP, and they would be repeated in each genotype-wise PCP. 
By looking at each such PCP, interesting insights into a particular genotype’s performance 
follow. Genotype 48 had second the highest seed, protein, oil and economic yields, and the 
highest oil content. Even though genotype 49 had the tallest plants and greatest lodging, the 
lowest protein content and quality index (it is the right time to recall the small diversity of 
quality index) together with medium oil content, it had the highest seed, protein, oil and 
economic yields. Genotype 50 also performed very well. However, genotype 51 was the 
worst among the 15 genotypes in the study even though it had the highest protein content 
and medium quality index—the lowest seed yield accounted for the lowest protein, oil and 
economic yields. This genotype was chosen for presentation only to show its particular 
characteristics, not because of its high potential.  
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Figure 3. Example of genotype-wise parallel coordinate plots for four selected genotypes. 

 
Figure 4 shows the three genotypes chosen above (so without genotype 51, which would 

not be considered interesting for further selection) against the background of the 
performance of all the genotypes studied. All that was seen for the selected genotypes on the 
genotype-wise plots can be now seen on this summary PCP; hence it is an optimum way of 
presenting the results of the across-environment analysis. 

In the above examples the genotype-by-environment interaction was ignored. To take 
account of this interaction, one can plot the environment-wise PCPs for each selected 
genotype (or for each genotype). Three examples for genotypes 48, 49 and 50 are presented 
in Figures 5-7. Genotype 48 was very high yielding (in terms of all yields considered) in four 
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environments and medium to high yielding in other environments. Its lodging was from 
very small to high. Oil content was from medium to very high, while protein content was 
from low to medium. Genotype 49 had the tallest plants in all environments but one, and the 
highest lodging in several environments in which lodging was not the same for all 
genotypes. Its yield was very high in almost all environments. Protein content was low in all 
environments while oil content was medium in seven environments and the lowest in one 
environment. The strong genotype-by-environment interaction is revealed for genotype 50 in 
terms of oil and protein content. In some environments, this genotype had very high (even 
the highest) protein content, while in others medium or even the smallest; oil content was in 
some environments high while in others medium. Nonetheless, yield was high in each 
environment.  

Note that for none of the three genotypes in Figures 5, 6 and 7 anything interesting 
concerned with the genotype-by-interaction could be observed thanks to the ordering of the 
plots subject to the increasing mean economic yield. In addition, for none of the 12 remaining 
genotypes this was observed. This is not, of course, the rule—sometimes certain genotypes 
will perform relatively very well only in poor environments while bad in good ones (or vice 
versa), which would indicate specific adaptation in terms of the corresponding attributes 
(Annicchiarico, 2002).  
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Figure 4. Parallel coordinate plot with genotypes 48, 49 and 50 emphasized by a thick black 
line. 
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Figure 5. Parallel coordinate plots showing performance of genotype 48 in eight 
environments. 
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Figure 6. Parallel coordinate plots showing performance of genotype 49 in eight 
environments. 

 



Communicat ions in B iometry and Crop Sc ience, 5(2)  92 

R70

0.43

1.02

1.25

3.50

13.6

18.9

36.3

40.2

23.4

25.8

59.7

65.0

2.15

4.13

0.83

1.57

0.52

0.99

1.35

2.56

height lodg
ing

seed
size

protein
%

oil
%

quality
index

seed
yield

protein
yield

oil
yield

econ
yield

B71

0.57

1.01

1

3

14.6

23.6

36.5

41.6

20.0

23.8

58.6

63.5

1.75

3.90

0.73

1.49

0.37

0.86

1.09

2.34

height lodg
ing

seed
size

protein
%

oil
%

quality
index

seed
yield

protein
yield

oil
yield

econ
yield

L70

0.66

1.08

1.00

3.75

15.3

23.2

35.5

41.6

19.7

24.6

57.3

64.5

0.59

4.38

0.24

1.67

0.12

1.07

0.36

2.74

height lodg
ing

seed
size

protein
%

oil
%

quality
index

seed
yield

protein
yield

oil
yield

econ
yield

L71

0.40

0.72

1

2

14.0

20.6

36.3

42.0

21.6

24.1

59.1

65.0

1.42

3.82

0.54

1.40

0.31

0.91

0.85

2.30

height lodg
ing

seed
size

protein
%

oil
%

quality
index

seed
yield

protein
yield

oil
yield

econ
yield

N71

0.25

0.54

14.8

21.8

38.8

43.3

21.4

23.8

61.3

65.7

1.28

3.33

0.52

1.32

0.28

0.77

0.81

2.07

height seed
size

protein
%

oil
%

quality
index

seed
yield

protein
yield

oil
yield

econ
yield

R71

0.33

0.90

1.00

1.75

12.2

18.2

36.6

42.1

20.4

24.2

59.2

63.6

1.75

4.00

0.71

1.46

0.37

0.90

1.08

2.37

height lodg
ing

seed
size

protein
%

oil
%

quality
index

seed
yield

protein
yield

oil
yield

econ
yield

N70

0.30

0.54

13.4

20.5

33.2

39.5

20.8

26.8

59.0

63.7

0.28

2.38

0.11

0.85

0.06

0.60

0.17

1.44

height seed
size

protein
%

oil
%

quality
index

seed
yield

protein
yield

oil
yield

econ
yield

B70

0.56

1.07

1.0

2.5

10.2

22.1

34.2

42.1

17.4

25.1

57.7

63.5

0.47

3.16

0.19

1.17

0.08

0.79

0.27

1.87

height lodg
ing

seed
size

protein
%

oil
%

quality
index

seed
yield

protein
yield

oil
yield

econ
yield  

Figure 7. Parallel coordinate plots showing performance of genotype 50 in eight 
environments. 
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DISCUSSION 
From the above examples it follows that parallel coordinate plots can be an efficient 

visualization tool for multivariate selection of promising genotypes. This efficiency has two 
main reasons. First, the genotype-wise PCPs offer quick access to information about 
performance of the genotypes. Second, this information is easily interpretable for plant 
breeders who do not possess advanced knowledge of statistics and visualization techniques. 
Although the example was based on 15 genotypes only, the PCP can be applied to any 
number of genotypes. This would of course require drawing and reading many graphs, but 
this cannot be avoided when one aims to choose promising genotypes from a large pool of 
them, studied in many environments. In most cases it would suffice to draw the 
environment-wise PCPs only for a number of genotypes selected based on the across-
environment analysis. Nonetheless, this kind of analysis is limited to a reasonable number of 
environments and genotypes, not for technical but rather human reasons—it is not easy to 
understand patterns in data from a large number of genotypes with many traits. It would be 
difficult to analyze plots for say more than several environments; DeLacy et al. (1996) say 
that multi-environment trials in CIMMYT typically include 50 entries in over 60 
environments, and for such data employing environment-wise PCPs seems impossible. 
However, note that PCPs can be applied also to visualize multiresponse profiles of 
genotypes already selected by means of other methods, including those for analyzing a 
single attribute (e.g., AMMI [Gauch, 1992] or GGE [Yan and Kang 2003]) and the pattern 
analysis based on the three-mode principal component analysis (Kroonenberg and Basford, 
1989; Bertero et al., 2004; Varela et al., 2006; D’Andrea et al., 2008). In that way the number of 
genotypes to study can be decreased—still, however, the number of environment plays role. 
It might be possible to group environments that are similar in terms of the traits of interest, 
but this requires further studies. Three-mode PCA is not easy to conduct and interpret, and 
is not free of choices one has to make before the analysis based on the scope of the analysis 
(la Vega et al., 2002). This method can be very powerful in describing patterns within the 
data, yet the approach presented herein can provide a fairly easy (though time-consuming) 
way of interpretation of multi-attribute performance of particular genotypes.  

The general interpretation of the data (like in Figure 1) is interesting, but this should be 
supported by other multivariate techniques (the scatterplot matrix was employed in the 
paper—Figure 2). This is especially important for choosing attributes to include in the 
genotype-wise PCPs. The main power of PCPs, however, is revealed at the analysis stage, by 
plotting the genotype-wise plots. This type of plotting offers clear information on how a 
particular genotype performs against the background of all genotypes, which is a very 
important piece of information for plant breeders; this is done for each environment as well 
as across environments. In fact, this could not likely be seen without graphing, and in 
addition, it seems that no commonly used graph can provide it in such detail. Finally, the 
PCP with emphasized genotypes selected in that way is also quite an efficient way of 
presenting the performance of these genotypes, although averaged across environments.  

In summary, the parallel coordinate plots used as described in this paper can be an 
efficient tool in selection of promising genotypes. It describes across-environment and 
environment-wise multiresponse profiles of genotypes, supporting interpretation of their 
performance in terms of all traits of interest. Reading and interpreting the graphs is tedious, 
but this cannot be avoided with such complex data. The construction of graphs is also not 
easy, so future research should focus on producing user-friendly software or code that do 
that automatically for the user. Interactive plots are a tool that can be extremely helpful for 
the parallel coordinate plots described in this paper, by letting the users quickly approach 
the information they need (for example, by choosing a particular genotype or environment of 
interest). 
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