
http://agrobiol.sggw.waw.pl/cbcs

Communications in Biometry and Crop Science
Vol. 5, No. 2, 2010, pp. 66–68

International Journal of the Faculty of Agriculture and Biology,
Warsaw University of Life Sciences, Poland

SOFTWARE TRICKS AND TIPS

PROC SQL vs. DATA Step or Anything you can do, I can do better
The second part of the title is a song from Irving Berlin’s 1946 Broadway musical “Annie

get you gun”, where the two protagonists (male and female) try to outdo each other in
performing more and more complicated tasks. Yet both fail in a basic task as neither can bake
a cake. The relationship between PROC SQL (Structured Query Language) and the DATA
step in SAS® is much the same. PROC SQL (SAS, 2010) is very useful in applied data analysis
situations to reorder data columns, calculate derived variables and add them to the dataset,
and merge information from various datasets. Some tasks are accomplished much more
straightforwardly with PROC SQL than the DATA step. This contribution is concerned only
with creating tables (data sets), a small subset of the capabilities of PROC SQL.

Let’s assume that the task at hand is to read the data from a cultivar trial into a SAS dataset
and then prepare it for analysis. We have three pieces of information (1) the actual RAW DATA
indexed by plot number, (2) the RANDOMIZATION table that links data and treatments
(entries), and (3) the TRIAL INFO that provides information about cutting date and data
conversion (see supplementary EXCEL file: http://agrobiol.sggw.waw.pl/~cbcs/articles/5_2_1/).
I will create SQL tables from these datasets assuming that we have a much more data.

I am invoking the standard SAS programming window color scheme, where key words
are highlighted in blue, user input is black, and comments appear green. The basic sequence
of commands to create a table in SQL is CREATE, SELECT, FROM, and WHERE in that
order. CREATE is used to name the new data table, SELECT governs what columns (=
variables in the data step) are selected from the underlying dataset, FROM names the
underlying data set, and WHERE indicates the conditions by which rows (= observations in
the data step) are selected and may be omitted if all observations are to be selected. PROC
SQL statements are executed immediately and do not require a RUN statement. PROC SQL
is terminated when a data step or another PROC is encountered or explicitly by the QUIT
statement. For good programming practice and clarity an explicit termination is preferred.

STEP 1: A simple SQL to extract data from a larger dataset
PROC SQL;
 CREATE TABLE RANDOMIZATION AS
 SELECT *
 FROM TEST.RANDOMIZATION
 WHERE LOC_N= 1;
 CREATE TABLE RAW_DATA AS
 SELECT *
 FROM TEST.RAW_DATA
 WHERE LOC_N= 1;
 CREATE TABLE TRIAL_INFO AS
 SELECT *
 FROM TEST.TRIAL_INFO
 WHERE LOC= "TVS_2010";

QUIT;

http://agrobiol.sggw.waw.pl/~cbcs/articles/5_2_1/SQL_data.xls
http://agrobiol.sggw.waw.pl/~cbcs/articles/5_2_1/

van Santen – PROC SQL vs. DATA Step 67

In our case it would not have been necessary to create this tables because they already
existed as SAS datasets (see supplementary SAS program). Now that we have created the
needed base tables we want to merge the information into a single table so we can do the
necessary calculations.

In the following example I have used the LEFT JOIN command, a special case of an
outer join, where the first table has rows not present in the second table. It functions much
like the (in=) option following the first named dataset when merging datasets during the
data step. The ON clause serves the same function as the BY statement during merging. Key
variables need to be explicitly referenced as to the source table because they are present in
both underlying tables.

STEP 2: Merging tables
PROC SQL;
 CREATE TABLE RANDplusDATA AS
 SELECT RANDOMIZATION.*, CUT, SDW, SGW, PGW
 FROM RANDOMIZATION LEFT JOIN RAW_DATA
 ON RANDOMIZATION.PLOT = RAW_DATA.PLOT;
 CREATE TABLE RANDplusDATAplusTRIAL AS
 SELECT RANDplusDATA. Loc_N, LOC, RANDplusDATA.CUT, PLOT,
 Entry_N, Entry, ROW, COL, SDW, SGW, PGW, P_DATE,
 H_DATE, CF, CF_UNITS
 FROM RANDplusDATA LEFT JOIN TRIAL_INFO
 ON RANDplusDATA.LOC_N = TRIAL_INFO.LOC_N;

QUIT;

The final step involves expressing forage dry matter yield in lbs per ha (for extension
purposes) and in kg per ha for a manuscript. We furthermore wish to express the yield in
each cut and block relative to the base population. We will create the coding for the BLOCK
variable as well as do the necessary transformation of the raw data. Along the way we will
discard all information not needed for analysis.

The table CALCULATED contains all the columns of interest from the underlying table
plus calculated values for forage yield in lbs per acre and kg per ha. In table TOTAL we
calculated the total seasonal plot yield. The argument UNIQUE or DISTINCT eliminates
duplicates and functions much like the NODUPKEY in PROC SORT. Notice that we coded
the total yield as cut=9, thereby enabling analysis of each cut as well as total in a single run.
Creating the table CUTSplusTOTAL introduces the UNION command, the PROC SQL
equivalent of the SET command for concatenating tables in the datastep. In the table
CONTROL we have extracted the mean of controls (check entries) by block and cut. These
will be used for the final table, where we calculate relative yields. Creation of the final table
READYforANALYSIS introduces NATURAL JOIN as an easy way to join tables that have
identical numerical key variables. In this particular case, no ON clause is needed.

STEP 3: Data transformation
PROC SQL;
 CREATE TABLE CALCULATED AS
 SELECT Loc_N, LOC, CUT, PLOT, INT(PLOT/100) AS BLOCK, Entry_N,
 Entry, ROW, COL, (SDW/SGW)*PGW*CF*CF_units AS lbs_acre,
 (SDW/SGW)*PGW*CF*CF_units*1.12 AS kg_ha
 FROM RANDplusDATAplusTRIAL;
 CREATE TABLE TOTAL AS
 SELECT UNIQUE Loc_N, LOC, 9 as CUT, PLOT, BLOCK, Entry_N,
 Entry, ROW, COL, SUM(lbs_acre) AS lbs_acre,
 SUM(kg_ha) AS kg_ha
 FROM CALCULATED
 GROUP BY LOC_n, plot;
 CREATE TABLE CUTSplusTOTAL AS
 SELECT * FROM CALCULATED

Communicat ions in B iometry and Crop Sc ience, 5(2) 68

 UNION
 SELECT * FROM TOTAL;
 CREATE TABLE CONTROL AS
 SELECT UNIQUE LOC_N,CUT, BLOCK, mean(kg_ha) as CONTROL
 FROM CUTSplusTOTAL
 WHERE SUBSTR(ENTRY,1,2)="C0"
 GROUP BY LOC_N, CUT, BLOCK;
 CREATE TABLE READYforANALYSIS AS
 SELECT CUTSplusTOTAL.*, 100*kg_ha/CONTROL AS REL_YIELD
 FROM CUTSplusTOTAL NATURAL JOIN CONTROL

ORDER BY Loc_N, CUT, PLOT;

QUIT;

I should point out that all tables could have been created within a single PROC call.
Furthermore, the creation of tables could have also been streamlined using fewer
intermediate tables but using extra tables makes the process user-friendlier for the
inexperienced SQL user. I have used PROC SQL extensively since 2008 and have come to
value it when I have to reshape data sets. Along with my previous tips and tricks articles
(van Santen 2008, van Santen 2009 a, b, 2010) this PROC has really enabled me to become
more efficient when serving the data analysis needs of my faculty colleagues and our
graduate students.

REFERENCES
SAS (2010). Introduction to the SQL Procedure

(http://support.sas.com/documentation/cdl/en/sqlproc/62086/HTML/default/a002
536894.htm; verified 20. July, 2010).

van Santen, E. (2008). Make a project folder home base for SAS. Communications in Biometry
and Crop Science Crop Science 3 (1), 1–2.

van Santen, E. (2009a). SAS Macro Variables. Communications in Biometry and Crop Science
Crop Science 4 (1), 1–2.

van Santen, E. (2009b). SAS Macro Variables and ARRAY Processing. Communications in
Biometry and Crop Science Crop Science 4 (2), 40–41.

van Santen, E. (2010). Data checking with SAS PROC TABULATE. Communications in
Biometry and Crop Science Crop Science 5 (1), 1–3.

contributed by Edzard van Santen
Forage Breeding and Genetics, Dept. of Agronomy and Soils,

Auburn University, AL 36849-5412.
E-mail: vanedza@auburn.edu

Published online: 28 July 2010

http://support.sas.com/documentation/cdl/en/sqlproc/62086/HTML/default/a002536894.htm
http://support.sas.com/documentation/cdl/en/sqlproc/62086/HTML/default/a002536894.htm

	References

