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ABSTRACT 
Many years of breeding experiments, germplasm screening, and molecular biologic 
experimentation have generated volumes of sequence, genotype, and phenotype information 
that have been stored in public data repositories. These resources afford genetic and genomic 
researchers the opportunity to handle and analyze raw data from multiple laboratories and 
study groups whose research interests revolve around a common or closely related trait. 
However, although such data sets are widely available for secondary analysis, their 
heterogeneous nature often precludes their direct combination and joint exploration. 
Integration of phenotype information across multiple studies and databases is challenging 
due to variations in the measurement instruments, endpoint classifications, and biological 
material employed by each investigator. In the present work, we demonstrate how Rasch 
measurement model can surmount these problems. The model allows incorporating data sets 
with partially overlapping variables, large numbers of missing data points and dissimilar 
ratings of phenotypic endpoints. The model also enables quantifying the extent of 
heterogeneity between data sets. Biologists can use the model in a data-mining process to 
obtain combined ratings from various databases and other sources. Subsequently, these 
ratings can be used for selecting desirable material or (in combination with genotypic 
information) for mapping genes involved in the particular trait. The model is not limited to 
genetics and breeding and can be applied in many other areas of biology and agriculture. 
Key Words: Aggregated ranking; Bradley-Terry model; combining data; rank-order. 
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INTRODUCTION 
In genetics, biology, or breeding, it is often useful to combine observations from 

numerous experiments into a single dataset. For example, in association mapping studies, 
phenotypic data used for the analysis are often collected from experiments conducted over 
the course of several years or are obtained from germplasm databases (e.g. Simko et al., 
2004a; Simko et al., 2004b; Simko and Hu, 2008). 

However, combining data from different years, locations, laboratories, and databases is 
challenging, because not all of the independent variables (e.g. plant accessions) will be 
common across all experiments. Moreover, laboratories often use their own ratings scales 
that cannot be combined by standard statistical approaches. This situation creates the need to 
develop methodologies that would allow combining datasets with only a partial overlap and 
dissimilar rating scales 

To combine data from dissimilar rating scales into a single aggregated rating, the 
absolute values from each test might be replaced with relative rankings. If there are two or 
more rankings of the same elements, then there may be enough information to construct 
interval measures of the distances between elements (Linacre, 2006). Simko and Pechenick 
(2010) compared several rank-aggregating methods for combining partially ranked data 
from plant breeding trials and concluded that methods based on the Bradley-Terry (Bradley 
and Terry, 1952) and Rasch (Rasch, 1993) models performed better than the other tested 
methods when factors such as fitness of aggregate rankings, time required for analyses, and 
the ability to analyze weak rankings were considered. In this paper we show how the Rasch 
model can be used to combine data from numerous sources into a single dataset while 
allowing for the quantification of heterogeneity among the combined data. The advantage of 
the approach is that the final rating is not affected by 1) the method or rating scale with 
which the original values were obtained, and 2) the number of trials in which each 
individual accession was evaluated. Since the Rasch analysis of rank-ordered data exhibits 
robustness against missing data, it does not require that every accession be evaluated in 
every trial. The final rating is based on a combination of an accession’s performance in trials, 
and on the mean performance of other accessions included in the same trials. 

In the next section we provide a brief description of the Rasch model for rank-ordered 
data. We also illustrate application of the method on sets of real data in four examples. These 
examples demonstrate how the model can be used for combining and analyzing 1) sparse 
data, 2) extreme scores, 3) unexpected observations, and 4) disparate tests.  

MATERIALS AND METHODS 
PARTIAL CREDIT MODEL 

Consider a situation where only a subset of accessions is tested in several independent 
trials and their performance in each trial is rated on a different scale. Suppose that we wish 
to combine results from these trials into an overall linear rating that estimates performance of 
all accessions, even those that were never tested together. We can replace absolute ratings in 
each trial with a relative ranking of accessions. As long as there are some overlapping 
accessions across rankings observed in different trials, the combined final rating (and 
ranking) can be constructed with the Rasch model approach (Rasch, 1993). Assuming that 
there are up to as many score categories as accessions in each trial, and that each score 
category is occupied by a single accession (or multiple accessions, if tied rankings are 
present), then a measurement model for this conceptualization is the same as the partial 
credit model (Wright and Masters, 1982). This type of an unidimensional latent trait model 
for polytomously-scored responses has long been applied in education and psychology 
(Masters, 1982).  
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MODEL FOR RANK-ORDERED DATA 
In the present work we use a modification of the partial credit model for rank-ordered 

data (Linacre, 1992). This new model includes comparison of multiple objects while allowing 
for the constrains imposed by a ranking: 

log (Pnij / Pni(j-1)) = Bn – Di – Fij  (1) 
where Pnij is the probability that accession n tested in trial i is observed in category j; Pni(j-1) is 
the probability that accession n tested in trial i is observed in category j-1; Bn is the 
performance measure of the accession n; Di is the difficulty measure of trial i (the mean 
performance of the accessions included in trial i); and Fij is the Rasch-Andrich threshold 
between categories j and j-1, or in other words the calibration measure of category j relative 
to category j-1 in trial i. 

This overall rating places each accession at its performance measure on a latent variable, 
which is marked out in logits. The standard error, S.E.n, of the measure, Bn, is: 
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where the accessions in trial i are ranked sequentially in categories from 1 to mi and ties are 
allowed. Similarly calculated is the standard error of trial i, S.E.i. 

If two accessions were never directly compared to each other, they can be compared 
through their performance against the other accessions. Because of the overlap of accessions 
across trials, it is possible to create a single scale of accession performance from these 
rankings. The wider the reported the measure range, the more unexpected statistically are 
the irregular results, and the more expected are the predicted results (Linacre, 2006). Under 
these conditions, the highest possible precision for any measure is obtained when the data 
fits the Rasch model. 

TEST OF HETEROGENEITY 
Fitting data to the model allows estimating of an accession performance from trials 

containing different number of different accessions. The Rasch model approach also enables 
the fit statistics to be calculated for the evaluation of the consistency of performance of each 
accession as reflected in its ranking in trials. Fit statistics can further report the degree to 
which rank ordering in each trial is consistent with the estimated measures based on the 
overall rankings. An identified deviant ranking might be due to an accession × trial 
interaction, or potential experimental error. However, it is necessary to point out that the 
Rasch model depends on a certain level of stochastic disagreement in order to construct 
linear measures from ordinal observations. Perfectly ordered observations would lack 
information that would allow for the construction of distances between accessions (Linacre, 
1989).  

TEST ON REAL DATA 
For demonstration purposes, we implemented the rank-order approach on real data that 

were obtained from analyses of processing quality, plant morphology, and response to 
pathogen infection. The four examples cover aspects frequently observed in biological 
datasets. 

Sparse data: The first example deals with combining very sparse data. To illustrate the 
application of the Rasch model, the approach is applied to chip quality data collected from 
the online databases of 10 laboratories. In this example only 10% of the data-points (from the 
complete matrix) is available for the analysis (Supplementary table S1: 
http://agrobiol.sggw.waw.pl/~cbcs/articles/5_1_8/Supplementary_Table_S1.xls). 

Extreme scores: In the second example we use the ear emergence date (Supplementary 
table S2: http://agrobiol.sggw.waw.pl/~cbcs/articles/5_1_8/Supplementary_Table_S2.xls) 
measured on 19 accessions of winter wheat (Giles, 1990; Piepho, 2003). This example 
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demonstrates how data-sets with extreme scores can be combined into a single rating. The 
example also allows for comparison of the results obtained from non-parametric approach 
based on the Rasch analysis and parametric approach based on the least square estimate. 

Unexpected observations: Besides combining data, the Rasch analysis allows for the 
detection of unexpected observations. To demonstrate this feature of the Rasch model 
approach, in the third example we analyze resistance of potato accessions to late blight 
(Supplementary table S3: http://agrobiol.sggw.waw.pl/~cbcs/articles/5_1_8/Supplementary_Table_S3.xls). 
Resistance data were obtained from 29 potato accessions tested in seven locations (Haynes et 
al., 2002). 

Disparate tests: The fourth example illustrates how the Rasch analysis can identify 
consistency of rank-order from fit statistics. The analysis is applied on tuber blight data 
obtained from testing 137 potato clones with five isolates of the pathogen (Supplementary 
table S4: http://agrobiol.sggw.waw.pl/~cbcs/articles/5_1_8/Supplementary_Table_S4.xls). 

STATISTICAL ANALYSIS 
All analyses were carried out using the Winsteps 3.65.0 computer program. For better 

illustration, the final measures of each example were linearly adjusted to the same scale 
ranging from 0 to 100, where 0 corresponds to the extreme low score and 100 corresponds to 
the extreme high score. The extreme score is reached when an accession is consistently rated 
as either the best (lowest ranked, highest measure = 100) or worst (highest ranked = 1, lowest 
measure = 0) in every trial where it is tested.  

RESULTS 
In the following part we describe details of analyses and results obtained with the Rasch 

model approach for rank-ordered data that was applied to combine heterogeneous datasets. 
The actual datasets and the final combined values can be seen at the supplementary tables S1 
to S4.  

EXAMPLE 1. – SPARSE DATA 
Potato chip quality is an economically important trait that is regularly evaluated in 

breeding programs worldwide. The best chipping cultivars are those that produce light-
colored, uniform chips. There are several different rating scales that are used to grade the 
quality of chips. For example, some laboratories arbitrarily use five-, nine-, and 10-category 
rating scales where lower numbers suggest chips of better quality. Other laboratories 
measure chip color on the Agtron scale (0 to 100 range) in which higher readings indicate a 
lighter, more desirable chip color, while still others express chipping quality as the percent of 
tested chips that passed a certain internal standard. 

To illustrate the application of the Rasch model, the approach was applied to chip 
quality data collected from the online databases of 10 laboratories (only named cultivars 
were considered in the present analysis). In total, 63 cultivars were evaluated across 157 
trials; however, those data were highly heterogeneous (Supplementary table S1). While only 
one cultivar was evaluated in 154 trials, seven cultivars were evaluated in a single trial only. 
The number of evaluated cultivars per trial ranged from three to 16. In total, only 994 (10%) 
data-points were available from the matrix that would have contained 9,891 data-points (63 
× 157) if all the cultivars had been evaluated in all the trials (Table 1). 

The application of the Rasch model allowed us to combine all 63 accessions into a single 
rating scale (Figure 1a). The model explained 74.0% of the variation in cultivar ranking. The 
individual accession effect explained 53.9% of the variation in the data while the effect of 
trials explained 20.1% of the variation in the observed rankings (Table 1). Cultivar Snowden, 
known for producing chips of high quality, was used as standard in 136 (87%) trials and had 
the third highest rating score (61.5 ± 0.6). The only two cultivars that were rated above 
Snowden (Beacon Chipper with 66.6 ± 7.3 and Navan with 61.9 ± 7.5) were tested in two 
trials and one trial only; thus they have high standard errors. Overall, the worst rated 
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cultivars were Molli (30.5 ± 4.9), Stampede Russet (30.2 ± 5.6), Fabula (19.3 ± 9.9), and Milva 
(8.4 ± 10.1). These four cultivars were always rated the worst—or tied for the worst—in the 
respective chipping trials. 

 

Table 1. Description of the four examples that were used in the demonstration of combining 
heterogeneous datasets with the rank-order approach. 

Trials per accession Accessions per trial Explained variation 
(%) 

Example Number 
of 
accessions 

Number 
of trials 

Data-
points in 
complete 
matrix 

Available 
data-
points Min. Mean Max. Min. Mean Max. Total Acce-

ssions 
Trials 

Unex-
plained 
variation 
(%) 

No. 1   63 157 9,891 994 1 15.8 154   3     6.3   16 74.0 53.9 20.1 26.0 
No. 2   19   12   228   73 3   3.8     5   4     6.1     9 91.0 72.8 18.2   9.0 
No. 3   29     7   203 196 6   6.8     7 22   28.0   29 84.8 83.9   1.0 15.2 
No. 4 137     5   685 543 1   4.0     5 87 108.6 121 65.7 16.6 49.2 34.3 

 

EXAMPLE 2. – EXTREME SCORES 
Another example illustrates how Rasch analysis deals with extreme scores. An accession 

reaches the extreme score if it achieves either the lowest or the highest ranking across all 
trials in which it is evaluated. Since the final measure that corresponds to an extreme score is 
not estimable by direct application of a Rasch model, extreme scores are typically adjusted to 
(slightly, but reasonably) non-extreme scores during the estimation process. Wright (1998) 
describes various approaches of data adjustment. These methods usually involve subtracting 
a fractional score point value from the maximum (or adding it to the minimum) score. 
Common extreme score corrections are in the range from 0.167 to 0.5. Winsteps corrects 
extreme scores by 0.3 score points by default. Another approach involves data augmentation 
with non-extreme responses that have minimal impact on the measurement system. Once the 
set of measures is estimated, the augmented data can be dropped, and standard error and fit 
statistics are computed from the observed data. 

Ear emergence date were observed on 19 accessions of winter wheat in 12 independent 
trials (Giles, 1990; Piepho, 2003) (Supplementary table S2). The number of accessions per trial 
ranged from four to nine, and each accession was tested in three to five different trials. In 
total, 73 data points (32%) were available from the matrix that would contain 228 data points 
(19 × 12) if all accessions were evaluated in all trials (Table 1). Two accessions achieved the 
minimum possible score. One of those accessions was tested in three trials (Ac-277), while 
the other one was tested in five trials (Ac-2098). Because of the occurrence of extreme scores, 
augmentation was performed prior to data analysis (Wright, 1998). 

The final rating for 19 accessions ranged from 3.7 ± 8.4 (Ac-277) to 88.0 ± 4.8 (Ac-988) 
(Figure 1b). The model explained 91.0% of the total variation, of which 72.8% was explained 
by the effect of accessions and 18.2% by the effect of trials (Table 1). Since ear emergence was 
measured in the same way in all trials, it was possible to calculate the composite rating also 
with a parametric approach. The rating based on a least square estimate (Piepho, 2003) 
significantly correlated (r  = 0.94, P < 0.0001) with the rating based on the Rasch model. The 
most important difference between the two methods was in rating of the two accessions with 
extreme score. When the ranking approach was applied, the lowest rated accession was Ac-
277, preceded by Ac-2098. The final order of the two accessions was switched when analysis 
was performed with the parametric approach. When Ac-2098 was excluded from the data 
analysis, the correlation between the two methods slightly increased to r = 0.97. 
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EXAMPLE 3. – UNEXPECTED OBSERVATIONS 
In this example, we applied the Rasch model to the data for potato resistance to late 

blight obtained from trials performed across the USA (Haynes et al. 2002). Potato late blight, 
caused by Phytophthora infestans, is one of the most devastating diseases of potato worldwide. 
Twenty-nine potato accessions, consisting of 12 breeding lines, 10 cultivars, and seven late 
blight differentials, were tested for resistance in seven locations (Florida, Maine, Michigan, 
Minnesota, New York, North Dakota, Pennsylvania). Plots in Florida and Maine depended 
on natural infection while plots in the other locations were inoculated with P. infestans. 
Reaction to infection was assessed as mean AUDPC (Area Under the Disease Progress 
Curve) for each accession at each location. A near-complete (97%) data matrix was available 
for analysis, because all accessions were tested in all locations except for seven differentials 
that were not tested in Florida (Supplementary table S3, and Table 1). Though the AUDPC 
score was used to assess the resistance in each location, the non-parametric analysis of 
ranked data was recommended for data analysis due to a high heterogeneity of resistance 
scores (Haynes et al., 2002). 

The Rasch model explained 84.8% of the variation in resistance ranking. Almost all of the 
variation (83.8%) was explained by the effect of individual accessions, and only 1.0% was 
explained by individual trials (Table 1). Once the data were fit to the Rasch model, Winsteps 
software was used to calculate the expected rank for each accession at each location. The 
observed and expected rankings were subsequently used to identify the most unexpected 
ranks. The unexpectedness of a rank was calculated as the difference between the observed 
and expected rank, divided by the square root of the variance. Our analysis indicates that the 
most unexpected rankings were rank 7 for line B1004-8 in Maine (expected 2.15), rank 24 for 
differential Rmulti in Maine (expected 27.65), and rank 12 for line B0811-13 in Florida 
(expected 4.78). These results are not surprising since only these two locations relied on 
natural infection with the pathogen. Moreover, testing carried out in Maine showed limited 
late blight infection due to lack of inoculation, a lack of favorable environment conditions for 
P. infestans, or both (Haynes et al., 2002). Therefore, the unexpected results might either 
indicate a possible genotype × environment interaction or errors. More tests would be 
needed in these two locations to determine if the rankings are consistent. The final resistance 
rating for 29 accessions ranged from 22.4 ± 2.8 (B1004-8 – most susceptible) to 72.8 ± 3.1 (Rmulti 
– most resistant) (Figure 1c). 

EXAMPLE 4. – DISPARATE TESTS 
Data for this example come from observations of late blight resistance on potato tubers 

(unpublished results from the W. E. Fry’s laboratory at Cornell University). Potato tubers 
from 137 clones were inoculated in separate tests with up to five isolates of late blight and 
percent of tubers developing symptoms were recorded. Sixty-six clones were inoculated with 
all five isolates, 26 clones were inoculated with four isolates, 27 clones were inoculated with 
three isolates, 10 clones were inoculated with two isolates, and 8 clones were inoculated with 
only a single isolate (Supplementary table S4). The data distribution in all trials was skewed 
toward resistance. These data also contain many tied rankings, especially among the most 
resistant clones. In total, 543 data-points (79%) were available from the matrix that would 
contain 685 data-points (137 × 5) if all clones had been tested with all isolates (Table 1). 

The final rating for 137 clones ranged from 20.9 ± 36.0 for the clone number CLN-061 
(most susceptible) to 81.3 ± 10.7 for the clone number CLN-083 (most resistant) (Figure 1d). 
An unusually large standard error was estimated for CLN-061, because this clone was tested 
only once and happened to be the most susceptible material in the trial. The Rasch model 
explained 65.7% of the variation in ranking of the clones.  However, only 16.6% of the 
variance was explained by the effect of individual clones, while 49.2% were explained by the 
effect of isolates (Table 1). The principal components/contrast analysis of model 
standardized residuals shows large contrast loading (> 0.99) for isolate #4 (Figure 2), 
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indicating that clones react differently to this isolate than to the other four isolates. Testing of 
the isolates on R-gene differentials revealed that four isolates (#1, #2, #3, and #5) are 
members of the US-8 clonal lineage, while the isolate #4 belongs to a Mexican lineage with a 
different set of avirulence genes (Rauscher et al., 2006).  

 
 

 
 

Figure 1. Final measure and corresponding standard error for individuals from the examples 
1 (a), 2 (b), 3 (c), and 4 (d). The values were obtained with the rank-order approach analysis 
that is based on the Rasch model. The original rating values and the final measures for all 
individuals are available in the Supplementary tables S1, S2, S3, and S4. Black diamond 
indicates a final measure in ascending order and vertical lines show standard error of the 
measure. 

 
 

Figure 2. Plot of standardized residual contrasts for the five Phytophthora infestans isolates 
tested on 137 potato clones (example 4). The principal components/contrast analysis shows 
the largest contrast loading for the isolate #4, indicating that tested clones react differently to 
this isolate than to the other four. 
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In a view of the different makeup of avirulence genes in the isolate #4, resistance data 
from this isolate should not be combined into an overall rating with data obtained from the 
other four isolates (we combined them for illustration purposes only). This example shows 
how the Rasch model can detect data originating from different sub-groups and separate 
those sub-groups. When isolate #4 was excluded from the analysis, the Rasch model 
explained less (49.7%) of the observed variance. However, while variation explained by 
isolates decreased 5-fold to 9.9%, variation explained by individual clones increased 2.4-fold 
to 39.8% (data not shown).  

DISCUSSION 
The Rasch analysis focuses on constructing linear measures from ordinal data (rank 

order, rating scales). Successful application of the model requires that the ordering in the 
data correspond to qualitative advances along the intended latent variable. This requirement 
appears to be successfully approximated in biological datasets. For empirical demonstration, 
the Rasch model was applied to combine data from several studies as shown in the four 
examples. 

The rank-order method worked well for integrating data across studies even when 90% 
of data were missing from the complete matrix (example 1). The ability to combine datasets 
with only a partial overlap is an advantage of the Rasch model approach. Due to the 
robustness of the model, combining sparse data is usually not a problem, and even datasets 
with 99% of missing data (relative to the complete matrix) can be successfully merged into a 
single dataset (Linacre, 2010). Also, mixing different types of ordered data (with or without 
ties) is usually straightforward and trouble-free (example 4). 

The biggest challenge in combining biological datasets with the Rasch model appears to 
be the presence of extreme scores (Simko and Pechenick, 2010). However, augmentation of 
data with non-extreme responses that have minimal impact on the measurement system 
(Wright, 1998) worked well, and the approach provided a reasonable estimate of the final 
ratings (examples 2 and 4). Nevertheless, ratings for extreme scores are less inferentially 
secure than ratings for non-extreme scores (Linacre, 2006). Besides allowing for the 
combination of data from dissimilar studies, the advantage of the Rasch model is the 
possibility of quantifying heterogeneity across the combined data. In example 3, statistical 
analysis based on the Rasch model revealed the most unexpected data that may indicate 
genotype × environment interaction (or potential experimental error), while in example 4 the 
isolate with a different set of avirulence genes was detected correctly. 

Previously, other methods were suggested for combining sparse and unbalanced data. 
Piepho (2003) compared two parametric methods for combining heterogeneous data such as 
evaluations performed on germplasm collections. The method of Giles (1990) removed bias 
by fitting a regression line to the bivariate scatter plot by principal component analysis. 
Though this method allowed calculating an adjusted mean, the resulting means were not 
invariant due to the arbitrary order of alignments. To avoid this type of ambiguity, Piepho 
(2003) advocates the use of an alternative method based on a least square estimate approach. 
When the Rasch model approach was applied to the same data (example 2), the final ratings 
significantly correlated (r  = 0.94, P < 0.0001) with the estimates obtained by the least square 
approach (Piepho, 2003). The high correlation indicates that the non-parametric rank-order 
based method yields a rating very similar to that from the parametric test based on absolute 
values. However, neither the principal component analysis nor the least square approach can 
be used to combine data when the rating scale across trials is not identical. To deal with 
different rating scales, Hartung and Piepho (2005) proposed a threshold model. This model 
may be used to derive mean scores on any one of the rating scales when data from a long-
term series of evaluations are available. 
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Simko and Pechenick (2010) compared performances of several rank-aggregating 
methods for combining data from plant breeding trials. Tests carried out on simulated and 
real data indicated that the best performing methods were based on Rasch and Bradley-Terry 
models, which are related to Thurstone’s model (Thurstone, 1927). In the Bradley-Terry 
model (Bradley and Terry, 1952), the rankings from each trial are decomposed into (n × (n – 
1) / 2) paired comparisons. For example, the rank-ordering of 10 accessions would yield 45 
paired comparisons (10 × 9 / 2). The results obtained by the paired comparison test are 
virtually identical to those from the rank-order test (Bramley, 2005; Linacre, 2006). The only 
difference in the final rating is that the paired comparison approach appears to create a 
longer scale, especially at the extremes of the scaling range (Linacre, 2006). 

Since the rank-order approach uses only information about the order of the data but 
discards the actual values, this non-parametric procedure can never be as powerful (able to 
detect existing differences) as its parametric counterparts when parametric tests can be used 
(Whitley and Ball, 2002). However, the advantage of non-parametric measures is that they 
are distribution-free and, therefore, are less sensitive to errors of measurements than the 
parametric statistics. Our work demonstrates that the Rasch model-based rank-order 
approach is suitable for combining phenotypic data from diverse datasets and dissimilar 
rating scales. We propose using this method in a data mining process to produce an 
aggregate rating from available databases and other sources that hold phenotypic 
information on biological material. A relative rating of phenotypes can be subsequently used 
together with molecular marker information in appropriate gene-mapping analyses (Simko, 
2004; Simko et al., 2009; Simko and Pechenick, 2010) or for selecting desirable material. 

Although the focus in our paper has been on use of the Rasch model for breeding and 
genetics, it should find application in many other areas of biology, including agriculture. 
Examples would include evaluation of herbicides, fertilizers, and other agricultural practices 
for efficacy. 
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