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ABSTRACT 
Combining heterogeneous data from plant breeding trials into a single dataset can be 
challenging, especially if observations have been performed only on partially overlapping 
sets of accessions, or if evaluations were done with different rating scales. In the present work 
we propose combining such data by making use of aggregate ranking approaches. To test 13 
aggregate ranking methods for performance, we have simulated 16 types of datasets that 
resemble those observed in plant breeding trials. The evaluation of aggregate ranking 
methods was carried out using both distance-based measures (Kendall’s tau and Spearman’s 
rho) and number of rank violations caused by a proposed aggregate ranking. Our analysis 
indicates that methods based on Bradley-Terry or Rasch models performed better than the 
other tested methods when factors such as fitness of aggregate rankings, time required for 
analyses, and ability to analyze weak rankings were considered. Verification of the approach 
on real data from 19 studies indicated a substantial increase in significance (P-value dropped 
by a factor of 100,000) when linkage between a marker and a trait was based on aggregated 
data rather than on each of the individual trials. The ability to combine heterogeneous data 
from independent studies has important ramifications for data analysis in association studies. 
Results from our study indicate that this kind of meta-analysis is more powerful than 
individual analyses. 
Key Words: Adjusted means; Bradley-Terry model; Markov chains; partially ranked data; Plackett-
Luce model; rank-aggregation; Rasch model; sampling methods. 

INTRODUCTION 
Plant breeders test annually a large number of accessions in multiple trials, continuously 

generating considerable amounts of data. However, combining data from trials performed at 
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different locations, years, or laboratories (breeding stations) is complicated because 
measurements used in the evaluations are not identical. For example, potato breeders 
regularly evaluate ‘earliness’, which indicates how early tubers set on tested material. Since 
direct observation of this trait is usually not possible, breeders use indirect assessment of 
earliness, such as number or weight of tubers or percent of plants that formed tubers at a 
certain date. Another approach is to count the number of days until the first tuber appears on 
a plant, or use an arbitrary scale to indicate plant vine maturity as it relates to early tuber 
formation. Yet another approach uses a test of tuber formation on stem cuttings grown in a 
greenhouse or in vitro (Simko et al., 1999; van den Berg et al., 1996). When merging such 
diverse sets of measurements is desired, threshold models proposed by Hartung and Piepho 
(2005) can be applied. However, if distribution-free methods are preferred (e.g. because of 
their smaller sensitivity to errors of measurement), the absolute values might be replaced 
with relative ranks, and the ranks combined into a single aggregated ranking. Yet another 
factor that has to be considered when combining data from plant-breeding trials is that 
different numbers of accessions are tested in separate trials and usually only a few (if any) of 
them are represented in any two trials. This type of ranked data is equivalent to partially 
ranked data from multiple ranked lists (Cook et al., 2007). 

Aggregation of partially ranked data can be done through a number of techniques that 
range from the simple that are based on averages to the complex that employ advanced 
computational methodologies (Marden, 1995). Simple rank aggregation techniques are easy 
to calculate, but they may not provide an optimal ranking when different subsets of 
accessions are analyzed in separate trials. The more complex techniques that take into 
consideration not only ranks, but also which accessions were compared in each trial, include 
the order-statistic models of Thurstone (1927; 1931), paired comparison models (Bradley and 
Terry, 1952), multistage models (Luce, 1959; Plackett, 1975), and methods based on Markov 
chains (MC) (Norris, 1997).  

The objective of the present work was to test and compare suitability of different 
methods for aggregating partially ranked data typically found in plant-breeding trials. 
Evaluation of 13 rank-aggregating methods was performed on 80 computer-generated 
datasets and real data obtained from testing earliness of potato tuber formation.  

MATERIALS AND METHODS 
SIMPLE POSITIONAL METHODS 

The primary advantage of simple methods is that they are easy to compute and a rank 
aggregation can be obtained quickly for even large datasets. These methods usually assign a 
score corresponding to the positions in which accessions appear in partial ranked lists, and 
then these scores are combined into a total score for each accession that is used to construct a 
final ranking. The two tested simple positional methods were RankProd (RP) (Breitling et al., 
2004) and METRADISC (MD) (Zintzaras and Ioannidis, 2008). 

METHODS BASED ON ADJUSTED MEANS 
The fitting of models here is based on the established principle of least squares. Least 

squares mean is defined as a linear combination of the estimated means from a linear model 
(Piepho, 2003). In other words, it is the observed mean appropriately adjusted for the other 
effects in the model. When no missing values are present in the dataset, mean and least 
squares mean of the data are identical. The two tested methods were based on additive 
model (AD) and regression model (RG) (Piepho, 2003). Though these methods were 
developed for analysis of metric data, they are often used to analyze ordinal data that do not 
meet the usual assumptions of homogeneity of variance, normality, and linearity/additivity 
(Hartung and Piepho, 2005).  
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METHODS BASED ON PAIRED COMPARISONS 
An alternative to ranking all accessions in a trial is to choose which accession from each 

pair of accessions is preferred (ranked higher). Once all pairwise preferences are established 
from a given set of rankings, methods that consider head-to-head comparisons may be 
employed. The Bradley-Terry model (Bradley and Terry, 1952) for paired comparisons is 
frequently used to calculate probabilities of the possible outcomes when accessions are 
judged in pairs. The model for a pair of accessions is:  
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where γi is a positive-valued parameter associated with accession i, for all of the comparisons 
pitting accession i against accession j. The four tested methods based on paired comparisons 
were ELOstat (ES) (Schubert, 2000a; 2000b), BayesELO (BE) (Coulom, 2008), Colley’s 
algorithm (CL) (Colley, 2002), and Mease’s algorithm (MS) (Mease, 2003). 

METHODS BASED ON MULTISTAGE MODELS 
Luce (1959) extended the Bradley-Terry model by allowing for more general 

comparisons than just those that are paired, and Plackett (1975) presented a saturated model 
from probabilities of winning:  
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This generalization of the Bradley-Terry model was termed the Plackett-Luce model 
(Marden, 1995). The three tested methods based on multistage models were Hunter’s 
algorithm (HN) (Hunter, 2004), Grave’s algorithm (GR) (Graves et al., 2003), and Rasch 
model (RS) for multiple comparisons (Linacre, 1992). 

METHODS BASED ON MARKOV CHAINS  
In probability theory studies, Markov chains are used as models for random phenomena 

evolving in time (Norris, 1997). A Markov chain is a sequence of variables generated by a 
stochastic process whose future states retain no memory of past states, and depend on the 
present state only:  

  (3) )|Pr( nnn xXxX ==+1

Models based on Markov chains can be used to convert pairwise preferences into a 
stationary distribution that can be solved for an aggregate ranking (DeConde et al., 2006). 
This type of model is frequently used in situations where very large numbers of accessions 
need to be ranked. The two tested methods based on Markov chains were PageRank (PR) 
(Page et al., 1998) and a modified version of the Markov chain – Thurstone model (MT) 
(DeConde et al., 2006). Our modification of the MT model assumes no information about the 
order of direct comparison between individuals that were, in fact, never compared. 
 

SIMULATIONS 

SIMULATED DATA 
To evaluate and compare the statistical properties of the various ranking algorithms, we 

constructed sets of simulated data that resemble those observed in plant breeding trials. Two 
100 × 100 full matrices were generated – each of them an equivalent of 100 accessions tested 
in 100 trials. For each accession in each trial the ‘observed value’ was generated by adding 
the ‘mean value’ for that accession and a random ‘noise’ component, as described in Cook et 
al. (2007). Mean values for all accessions were drawn from a normal distribution N(100,225), 
while noise for the two matrices was drawn from a normal distribution N(0,100) and 
N(0,625), respectively. Because of this difference in noise, the mean of Pearson’s correlation 
coefficient between trials was 0.67 for the first matrix and 0.25 for the second one. 
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SAMPLING METHODS 
Four different sampling methods were employed to randomly construct incomplete 

datasets from the original 100-accession, 100-trial full matrices, where only a fraction of the 
total accessions were included in each trial (Figure 1). The rationale for the different 
sampling methods was to create data whose pattern would resemble those seen in plant 
breeding trials. For example, random sampling ‘R’ imitates data obtained from different 
breeding programs, locations, and years with minimal and inconsistent overlap, while the 
drop-and-replace pattern of ‘C’ sampling resembles performance trials where partially 
overlapping subsets of accessions are tested in consecutive years. Non-random samplings ‘B’ 
and ‘A’ emulate trials at two or more locations with incompletely overlapping subsets of 
accessions that differ substantially in performance. While all four methods generated these 
datasets in a stochastic fashion, constraints were placed on some of the sampling methods to 
ensure that certain rules be followed. All datasets chosen for subsequent analysis shared 
certain properties: 

1. Each accession was tested in at least 1 trial and not allowed to be tested in all trials 
(with the exception of four controls in “non-random sampling C” that were tested in all 100 
trials). 

2. Each trial contained at least 2 and at most 99 accessions. 
3. No accession performed consistently best or worst in every trial in which it was tested. 
4. No two accessions had identical observed values in any one trial. 
Random sampling (R): Accessions were randomly selected according to a binomial 

distribution, where the probability of any accession being selected in any trial was equal. 
Non-random sampling (A): Accessions were randomly selected such that in no trial the 

expected best and worst accessions would be directly compared. 
Non-random sampling (B): Accessions were randomly selected such that half the trials 

would contain frequent direct comparisons between the best-performing and worst-
performing, and half would contain comparisons between middle-performing and worst-
performing accessions, while none would contain direct comparisons between best-
performing and middle-performing accessions. 

Non-random sampling (C): Every trial contained four controls: the overall best two and 
worst two performing accessions. Beside controls, the accessions for the first trial were 
selected at random for a desired density of data. The same accessions were selected for 
inclusion in the following trial, with the exception of one accession that was dropped and 
replaced by a new accession. The dropped accession had to have already been included in at 
least as many or more trials than any of the remaining accessions. The replacement accession 
was selected randomly from a pool of accessions that had not yet been included in any trial, 
or had been included in fewer trials than any other accession. The drop-and-replace pattern 
of this sampling resembles an evaluation method proposed by Halekoh and Kristensen 
(2008).  

DENSITY OF DATA-POINTS 
Each sampling method was designed to reduce the number of data-points from 10,000 

(100 accessions tested in 100 trials) in the full matrices to either ~20% or ~7%, hereon referred 
to as data-point density. Datasets with similar data-point densities had different pairwise 
densities (proportion of unique direct pairwise comparisons), depending on the sampling 
method used. Five datasets were generated for every combination of the four sampling 
methods, two data-point densities, and two original matrices. After generating these 80 
datasets, the ranking for each trial in each dataset was determined by sorting the observed 
values in descending order and replacing each value by its relative position. These rankings 
were then used as input for the aggregation methods. 
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Figure 1. Demonstration of differences among four sampling methods and two densities of 
data-points. Each black dot shows a data-point used in aggregate ranking analyses. These 
data-points were sampled from an original full matrix of 100 accessions (rows) tested in 100 
trials (columns). For easier illustration, accessions were sorted in descending order according 
to their mean performances in the original full matrix. Below each plot are listed pairwise 
densities. 

INVERTED RANKING 
Some of the tested methods (RP, HN, GR, PR, MT) are based on models whose objective 

is to identify only a few best performing accessions, while resolution for bottom ranked 
accessions is low. To increase resolution on both ends of distribution, calculations were 
carried out for both regular and inverted ranked lists and combined into a single aggregated 
ranking. 
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MEASURES OF PERFORMANCE 

DISTANCE-BASED MEASURES AND RANK VIOLATIONS 
Evaluation of performance requires some measure of the distance between the aggregate 

rankings determined by tested methods and an expected ranking. In real datasets the 
expected ranking is usually not known; however, our simulated datasets were generated 
from known normal distributions and therefore the means of observed values for each 
dataset were used to determine the expected ranking. These expected rankings were 
subsequently used to measure similarity to aggregate rankings with Spearman’s rho and 
Kendall’s tau rank correlation coefficients (Marden, 1995). In addition to the rank 
correlations, performance of all methods was evaluated by the number of rank violations 
caused by a proposed aggregate ranking. The number of rank violations was calculated by 
comparing an aggregate ranking and the ranked list of accessions in each trial from which 
the aggregate ranking was generated (Cook et al., 2007). A ranking violation between two 
accessions occurs when they are ranked differently in a trial as compared to the aggregate 
ranking. If the two rankings agree, no violation is accrued. The calculated number of rank 
violations was subsequently transformed into a proportion, by dividing it with the 
maximum possible number of rank violations for a given dataset. 

ANALYSIS OF PERFORMANCE 
In each type of dataset, one-way analysis of variance (ANOVA) was performed to test 

equality of the average correlation coefficients (or proportion of rank violations) among all 13 
methods. If it was determined by ANOVA that means were not equal, Hsu’s MCB test (Hsu, 
1981) was applied to detect statistical significance between the best performing method 
(BPM) for the particular type of dataset and all other tested methods. Three-way ANOVA 
was carried out to identify factors affecting performance of a method in different types of 
datasets. To compare overall performance of tested methods, the receiver-operating 
characteristic (ROC) curve analysis (Hanley and McNeil, 1982) was carried out on 8,000 
ranks from each method and the area under the ROC curve (AUC) was calculated. 

ANALYSIS OF REAL DATA 
To demonstrate the value of aggregate ranking on real data, we used observations of 

tuber formation from 157 accessions and 19 independent trials (Supplementary Table S1: 
http://agrobiol.sggw.waw.pl/~cbcs/articles/5_1_7/Supplementary_Table_S1.xls).  

Earliness of tuber formation was indirectly assessed as number of tubers, weight of 
tubers, percent of tuber-forming plants, number of tubers in vitro, weight of tubers in vitro, 
percent of greenhouse-grown cutting with tubers, and number of days from planting to 
initiation of the first tuber. Detailed information about traits and scoring is in Simko et al. 
(1999) and van den Berg et al. (1996). A subset of data was randomly selected (through 
random sampling described above) from the dataset in such a way that each trial contained 
only 12 to 41 accessions and no accession was tested in more than eight trials. Eleven of the 
13 methods were used to combine data from individual trials into aggregated rankings (HN 
and GR were not tested, because both methods can aggregate only strong rankings without 
ties). 

We hypothesized that aggregate rankings are more likely to detect the true marker-trait 
association than limited data from individual trials. To test this hypothesis we used the 
molecular marker TG441 (on chromosome 5) that is strongly associated with earliness of 
tuberization (Simko et al., 1999, van den Berg et al., 1996) and was previously used to 
genotype all 157 accessions. Association between TG441 and earliness of tuberization was 
calculated in each of the 19 individual trials, and also for aggregated rankings produced by 
the 11 methods. The level of association was expressed as –log(P), where P is the probability 
of obtaining a test statistics as large (or larger) than observed. To examine the effect of 
sample size on –log(P) values, 1,000 permutations were generated from ranked data 

 

http://agrobiol.sggw.waw.pl/~cbcs/articles/5_1_7/Supplementary_Table_S1.xls
http://agrobiol.sggw.waw.pl/~cbcs/articles/5_1_7/Supplementary_Table_S1.xls


Simko & Pechen ick – Combining partially ranked data in plant breeding 47

observed in each trial and also from aggregated ranks calculated for 157 accessions. The –
log(P) values calculated from permutated ranks were then compared to those obtained from 
actual aggregated rankings. 

SOFTWARE AND CODES 
We performed the analyses presented in this paper using the following software and 

codes. Codes not already published online (or provided to us by other sources) are available 
upon request. 

SOFTWARE 
R (http://www.R-project.org), MATLAB version R2008b (The MathWorks, Natick, MA, USA), SAS 

version 8.02, JMP version 6.0.3 (both from SAS Institute, Cary, NC, USA), BayesELO 
(http://remi.coulom.free.fr/Bayesian-Elo), WINSTEPS version 3.65.0 (Winsteps.com, Chicago, IL, USA), 
and ROC curve calculator (http://www.rad.jhmi.edu/jeng/javarad/roc/JROCFITi.html). 

CODES 
Rank products (RP) were calculated in R using the RankProd package available at 

http://www.bioconductor.org/packages/2.2/bioc/html/RankProd.html. The METRADISC 
software is available online at http://biomath.med.uth.gr, however we implemented the 
algorithm in MATLAB. AD was implemented in R. RG was run using SAS software with 
code provided to us by H.P. Piepho. ES and BE were run using Bayeselo. CL was run in 
MATLAB with the code “colley.m” available in Govan (2008). MS was run in R with code 
available online at http://www.davemease.com/football/Rcode.html. HN was run in MATLAB with 
the code “plackmm.m” available online at http://www.stat.psu.edu/~dhunter/code/btmatlab.  
GR was run in R with code provided to us by Todd Graves. RS was run with WINSTEPS.  
PR was run in MATLAB with the code “pagerankpow.m” available online at 
http://www.cs.ubc.ca/~murphyk/pmtk/doc/doc/authors/pagerankpow.m (the code was 
modified to be able to accept different values for P). MT was implemented in MATLAB from the code 
provided by Vasyl Pihur.  

RESULTS AND DISCUSSION 
When there is good agreement among ranked lists (trials) and high density of randomly 

distributed data-points, the difference in performance of rank-aggregating methods is small 
(Table 1a, 1b). Therefore, we tested the performance of 13 methods under more challenging 
conditions that simulate data distributions frequently observed in plant breeding trials. To 
measure the performance, three common measurements for rank-aggregation were used: 
Kendall’s tau, Spearman’s rho, and rank violations. Because the two correlation coefficients 
produced very similar results (correlation between rho and tau = 0.984) only Kendall’s tau is 
shown in Table 1a and Figure 2a. Pearson’s correlation coefficient between proportion of 
rank violations (Table 1b) and tau was 0.782 (with rho 0.749), indicating that this parameter 
differs somewhat from the distance-based measures. When evaluation of performance was 
based on proportion of rank violations, differences between methods were less pronounced 
and a smaller number of significant differences were detected (Table 2b). Despite variability 
in proportion of rank violations, all aggregate ranking methods were affected most by the 
sampling approach, and least by the density of data-points (Figure 2b). Differences between 
methods based on tau are discussed individually for each type of rank-aggregating method. 
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a) 

 

b) 

 

Figure 2. Effects of the three factors (density of data-points, sampling approach, and 
correlation between trials) on performance of 13 rank-aggregation methods. For ease of 
plotting, the P-values from three-way ANOVA were transformed into a logarithmic scale by 
–log(P). Performance of the methods was evaluated with Kendall’s tau (2a) and proportion of 
rank violations (2b). 
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SIMPLE POSITIONAL METHODS 
Simple positional methods (MD, RP) do not take into consideration which accessions are 

compared in each trial when aggregating ranks. Therefore, both methods significantly 
underperformed in the datasets where the best and worst performing accessions are never 
directly compared (sampling A). The factor that most significantly affects performance of 
these two methods (based on change in tau) was sampling, while the level of correlation 
between trials within datasets did not affect aggregate rankings. AUC for MD (0.915) and RP 
(0.917) were the lowest of all tested methods (Figure 3). Previously, both MD and RP have 
performed very well when tested on data from microarray studies (Breitling et al., 2004; 
Zintzaras and Ioannidis, 2008). However, unlike in our datasets, microarray-based ranks are 
produced from several tens of thousands of genes, of which most are overlapping in two or 
more microarrays. While these two methods can be used to aggregate ranks in microarray 
experiments, they are generally not suitable for aggregating ranks from the type of data 
tested in this study.  

METHODS BASED ON ADJUSTED MEANS 
Though the methods based on adjusted means were developed for metric data (Piepho, 

2003), they performed reasonably well when tested on ranked data simulated in our study. 
Of the two methods, the additive model-based method performed significantly (P < 0.001) 
better overall than the regression model-based method (AUC for AD = 0.973, RG = 0.933). 
However, a weakness in AD was revealed when the sampling method that excludes direct 
comparisons between best-performing and middle-performing accessions was used to 
generate datasets (sampling B). The most significant factor affecting the tau value of AD was 
density of data-points, while RG was more affected by the correlation between trials in 
datasets. The poor performance of RG in many datasets with sparse data-points is probably 
due to a failure to converge (Piepho, 2003). Of these two methods, AD appears to be better 
suited for aggregate ranking of plant breeding trials. A further advantage of AD is that it 
does not require an iterative process and can be rapidly carried out on large datasets. 

METHODS BASED ON PAIRED COMPARISONS 
Aggregate ranking methods based on pairwise comparisons (ES, BE, CL, MS) and the 

Bradley-Terry model generally performed very well (AUC from 0.975 for CL to 0.978 for ES). 
The variability of Kendall’s tau in all four methods was affected most by density of data-
points, and least by sampling approach. A disadvantage of the Bradley-Terry model is that it 
does not allow estimating the likelihood under certain conditions. A problem arises, for 
example, when an accession performs better than any other accession in all trials in which it 
is tested. Then the maximum likelihood estimator for this accession is infinity and the model 
will produce a tie for top rank among all accessions with this estimator, regardless of which 
other accessions are tested in the same trials (Ford, 1957; Marden, 1995). To avoid this kind of 
problem several different solutions have been suggested, such as penalizing the likelihood 
(Mease, 2003), adding a prior (Coulom, 2008), applying the Laplace formula (Colley, 2002), or 
assigning a finite value (Schubert, 2000a, b). All these modifications have a relatively small 
effect on the final rankings, and as the number of pairwise comparisons increases the effect 
soon becomes negligible. Since all methods based on paired comparisons handle ties, they 
can be useful for combining datasets from plant breeding trials. 

METHODS BASED ON MULTISTAGE MODELS 
Results of the methods based on two multistage models (AUC for HN = 0.978, RS = 

0.976) were comparable to those based on pairwise comparisons. The results of GR method 
were different from the other two multistage-based methods (AUC for GR = 0.933), since it 
consistently performed worse than BPM when expected top and bottom ranked accessions 
were never directly compared (sampling A). Variability of Kendall’s tau for HN and RS was 
affected most by data-point density and least by sampling approach, while GR was affected 
most by sampling approach and least by correlation between trials in a dataset.  
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Table 1. Mean values of Kendall’s tau (1a) and proportions of rank violations (1b) for 13 rank 
aggregation methods tested on 16 types of datasets. 

Table 1a – Kendall’s tau 

Correla-
tion Density 

Sam-
pling RP MD AD RG ES BE CL MS HN GR RS PR MT 

High Dense R 0.94 0.94 0.94 0.93 0.95 0.95 0.95 0.95 0.94 0.94 0.95 0.90*** 0.93* 
High Dense A 0.40*** 0.40*** 0.95 0.89*** 0.96 0.95 0.95 0.95 0.94 0.90*** 0.96 0.83*** 0.94 
High Dense B 0.76*** 0.92*** 0.72*** 0.93** 0.91*** 0.95 0.89*** 0.95 0.94 0.96 0.91*** 0.84*** 0.94 
High Dense C 0.88*** 0.88*** 0.92 0.91 0.91 0.94 0.91 0.94 0.93 0.92 0.93 0.80*** 0.91 
High Sparse R 0.81*** 0.83* 0.84 0.79*** 0.85 0.86 0.85 0.86 0.86 0.87 0.85 0.74*** 0.82* 
High Sparse A 0.36*** 0.37*** 0.85 0.71*** 0.87 0.86 0.80** 0.80** 0.86 0.40*** 0.83 0.77*** 0.83 
High Sparse B 0.69*** 0.79*** 0.67*** 0.79*** 0.82** 0.86 0.80*** 0.84 0.86 0.85 0.81*** 0.77*** 0.83* 
High Sparse C 0.74 0.75 0.74 0.74 0.74 0.70* 0.74 0.75 0.69** 0.74 0.75 0.64*** 0.68***
Low Dense R 0.91 0.90 0.90 0.81*** 0.90 0.90 0.90 0.90 0.90 0.91 0.91 0.84*** 0.89 
Low Dense A 0.41*** 0.42*** 0.89 0.43*** 0.90 0.89 0.89 0.89 0.90 0.57*** 0.90 0.70*** 0.88 
Low Dense B 0.80*** 0.90 0.75*** 0.81*** 0.89 0.90 0.89 0.90 0.90 0.91 0.90 0.78*** 0.88* 
Low Dense C 0.88 0.87 0.87 0.85 0.87 0.87 0.87 0.87 0.86 0.88 0.86 0.58*** 0.83* 
Low Sparse R 0.75 0.76 0.74 0.52*** 0.74 0.74 0.75 0.75 0.76 0.74 0.75 0.65*** 0.74 
Low Sparse A 0.43*** 0.44*** 0.69 0.49*** 0.70 0.69 0.65 0.64 0.71 0.45*** 0.65 0.64*** 0.67 
Low Sparse B 0.73* 0.78 0.69*** 0.54*** 0.76 0.77 0.76 0.76 0.77 0.79 0.76 0.68*** 0.75 
Low Sparse C 0.70 0.72 0.71 0.68 0.71 0.70 0.71 0.71 0.69 0.70 0.70 0.62*** 0.67 

 

Table 1b – Rank Violations 

Correla-
tion Density 

Sam-
pling RP MD AD RG ES BE CL MS HN GR RS PR MT 

High Dense R 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19* 0.19 
High Dense A 0.37*** 0.37*** 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.34*** 0.32 
High Dense B 0.21** 0.20 0.21* 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.21* 0.20 
High Dense C 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15* 0.15 
High Sparse R 0.17 0.17 0.17 0.16 0.17 0.16 0.16 0.17 0.17 0.17 0.17 0.20** 0.17 
High Sparse A 0.32*** 0.33*** 0.28 0.29 0.28 0.28 0.28 0.28 0.29 0.32*** 0.28 0.33*** 0.29 
High Sparse B 0.20 0.19 0.19 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.20* 0.18 
High Sparse C 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.11*** 0.08 
Low Dense R 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.33** 0.32 
Low Dense A 0.42*** 0.42*** 0.40 0.43*** 0.40 0.40 0.40 0.40 0.40 0.41*** 0.40 0.43*** 0.40 
Low Dense B 0.33 0.33 0.33 0.33 0.32 0.32 0.32 0.32 0.33 0.33 0.32 0.33 0.33 
Low Dense C 0.28 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.28 0.28 0.27 0.30*** 0.28 
Low Sparse R 0.28 0.28 0.28 0.28 0.27 0.27 0.27 0.27 0.28 0.28 0.27 0.30*** 0.28 
Low Sparse A 0.34 0.34 0.33 0.34 0.33 0.33 0.33 0.33 0.33 0.35 0.33 0.36** 0.33 
Low Sparse B 0.29 0.29 0.28 0.29 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.29 0.28 
Low Sparse C 0.18* 0.18* 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.18*** 0.17 0.19*** 0.18 

The best performing method (BPM) for each type of dataset is in bold. Asterisks indicate methods that perform significantly 
worse than BPM at P < 0.05 (*), P < 0.01 (**), and P < 0.001 (***). Statistical analyses were carried out on data with more decimal 
places; therefore some values that appear to be identical after rounding are significant at different levels. Correlations, densities 
of data-points, and different samplings methods are described in Material and Methods. 
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Figure 3. Receiver-operating characteristic (ROC) curve analysis carried out on 8,000 ranks 
from each method. The area under the ROC curve (AUC) is indicated next to the 
abbreviation for each method. Asterisks indicate methods that performed significantly worse 
than the best performing method (ES) at P < 0.05 (*), P < 0.01 (**), and P < 0.001 (***). For 
better resolution only the upper left quadrant of the whole range (from 0,0 to 1,1) is shown. 
Abbreviations for rank-aggregation methods are explained in Material and Methods. 

 

Methods based on multistage models are generally used when overlapping accessions are 
ranked in a number of incomplete lists. Multistage models have been successfully applied in 
the ranking of racecar drivers (Graves et al., 2003; Hunter, 2004), racing horses (Stern, 1990), 
golf players (Linacre, 1992), primate intelligence (Johnson et al., 2002), crop resistance 
(Halekoh and Kristensen, 2008), and many areas of education and psychology (Masters, 
1982). As with the methods based on Bradley-Terry, these three methods also fail to estimate 
maximum likelihood when an accession performs better than any other accession in all trials 
in which it is tested. A possible solution to this problem is the addition of a “dummy” 
accession to the analysis, or subtracting a fractional point value from the best and worst 
performing accessions (Wright, 1998). Unfortunately, neither HN nor GR can handle tied 
ranks, which is a significant limitation if these methods are to be considered for use in plant 
breeding analyses, and of the three methods tested here only RS is able to handle datasets 
with weak rankings (Simko and Linacre, 2010). 

METHODS BASED ON MARKOV CHAINS 
Aggregate rankings produced by the two methods based on MC (PR, MT) differed 

substantially. While tau values of MT were significantly (P < 0.001) worse than those of BPM 
in only one type of dataset, PR performed significantly worse than BPM in all types of 
datasets. Moreover, the AUC value for MT (0.972) was significantly higher than the AUC 
value for PR (0.955). Aggregate rankings based on PR were less affected by the three tested 
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factors (data-point density, sampling approach, and correlation between trials) than rankings 
produced by MT, which were affected more than any other method by the density of data-
points. PR was originally developed to rank millions, and is currently used to rank billions, 
of websites of the World Wide Web (Page et al., 1998), while MT was devised to perform 
meta-searches by combining the results of several Web search engines to produce a collated 
answer (Dwork et al., 2001). Both these methods have found applications well beyond their 
original intentions. For example, PR has been used to rank scientific journals (Bollen et al., 
2006) and papers (Chen et al., 2007), sports teams (Govan, 2008), and gene expression data in 
microarray experiments (Morrison et al., 2005), while MT has been applied to combine 
results of microarray experiments (DeConde et al., 2006) and for identification of biomarkers 
(Dutkowski and Gambin, 2007). Our tests of the two methods on datasets similar to those 
seen in plant breeding indicate that MT is more suitable for aggregating ranked data than 
PR. An advantage of these two MC-based methods is that they can handle large datasets 
more efficiently than most of the methods based on multistage or paired comparison 
methods. 

ANALYSIS OF REAL DATA 
When the earliness of tuberization data from 19 individual trials were used in marker-

trait association analysis, the –log(P) ranged from 0.04 to 3.69. These values did not change 
when either ranked data (0.03 to 3.71), or 1,000 permutations of ranked data from each trial 
(0 to 3.58) were used as input. However, when –log(P) was calculated from aggregate 
rankings of 157 clones, the value substantially increased and ranged from 8.72 (RS) to 9.96 
(PR). These results indicate that aggregating ranked data from separate trials where only a 
subset of accessions was tested substantially increased detection level of marker-trait 
association. Since –log(P) is a logarithmic scale, the actual change in P value is more than 
100,000 fold (from 3.71 to 8.72). Moreover, this observed difference is not caused by more 
accessions being used in the analysis (157 in aggregate ranking versus 12 to 41 in individual 
trials) because –log(P) values computed from 1,000 permutations of aggregated ranks did not 
exceed 2.88. 

SELECTING APPROPRIATE METHODS FOR AGGREGATING RANKED DATA 
To select the most appropriate methods for aggregating ranks, we judged methods not 

only by their performance in the 16 different types of datasets, but also speed of calculation, 
and whether ties (weak rankings) in the original data can be handled. 

Ten out of 13 tested methods performed an analysis of each dataset in less than a minute. 
For the other three methods (RG, MS, GR) it usually took longer to converge, sometimes 15 
minutes, sometimes up to a few hours. Though the calculation time is still acceptable for the 
present datasets, it may become prohibitive when larger datasets are analyzed, and therefore 
these methods are not being considered for practical use. From the remaining methods, the 
consistently best aggregate rankings were observed when using ES, BE, CL, HN, and RS 
(AUC 0.978-0.975). Out of these five methods, HN is suitable for analysis of strong rankings 
only (no ties), while the remaining four methods appear to be well suited for combining 
ranked lists from plant breeding trials. All four of these methods show high AUC and tau 
values, and low proportions of rank violations.  

In addition to rankings, we performed a limited test of ratings produced by the four 
methods on three additional datasets (data not shown). These datasets were built with 100 
individuals and 20 trials, and no data points were removed through sampling. Observed 
values were generated using a normal, uniform, and bimodal distribution, respectively. The 
Pearson’s correlation coefficient between the means of the original data and the final 
aggregate rating was above 0.97 for all methods and distributions, with the exception of RS 
where coefficient was 0.92 for normal distribution. This indicates that not only rankings, but 
also ratings produced by these four methods strongly correlate with the expected data 
distribution. 
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However, when selecting the best methods we did not explicitly consider other factors, 
such as capability to combine trials or studies with different levels of reliability, or 
calculating other statistics such as standard deviation of aggregate rankings. Also, much 
larger datasets with high densities of data-points could lead instead to selection of a method 
that is even less computationally demanding. 

There are several other methods that can be used to produce aggregate rankings from 
partially ranked data. These include a linear programming approach (implemented in MinV) 
(Coleman, 2005) and a branch-and-bound search (Cook et al., 2007), which determine 
optimal rankings based on minimizing the number of rank violations, and RankAggreg 
(Pihur et al., 2008) and TopKCEMC (Lin and Ding, 2009), which use Kendall’s tau and/or 
Spearman’s rho to find aggregate rankings that most closely match the partial rankings. 
However, all these methods (except MinV) use strong rankings only, meaning no ties can be 
input, and are very computationally demanding – much more so than any method tested in 
this study.  

CONCLUSIONS 
Approaches for combining metric data from multiple series of plant breeding trials have 

been extensively studied (e.g. Piepho, 2003), but little information is available regarding 
ranked data when only a subset of accessions is evaluated in each trial. To test the 
performance of different aggregate-ranking methods, we designed and generated several 
types of datasets that resemble those typically found in plant breeding trials. Our analysis 
indicates that three methods based on Bradley-Terry (ES, BE, CL) and one based on Rasch 
(RS) models performed better than the other tested methods when factors such as fitness of 
aggregate rankings, time required for analyses, and the ability to analyze weak rankings 
were considered. Accuracy of these rank-aggregating methods improved with an increased 
density of data-points. 

We further showed on real data that combining ranked lists from several trials 
significantly improves the power to detect factors of interest despite noise in the datasets. In 
our example the significance of linkage between a marker and a trait of interest was 
substantially increased (as indicated by a drop in P-value by a factor of 100,000) when tests 
were performed on aggregated ranks as compared to data from the original individual trials. 
The ability to combine heterogeneous data from independent trials has important 
ramifications for data analysis. Results from our study indicate that this kind of meta-
analysis is more powerful than individual analyses. Application of the aggregate ranking 
approach is not limited to plant breeding trials, but can be applied also in other areas of 
agricultural and biological research with similar distributions of data. For example, in 
genetics several datasets containing phenotypic information can be combined into one, 
which can then be used in association mapping studies 
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