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ABSTRACT 
Structural dimensions, digitally measured on stems and leaves of soybean plants during the 
first six reproductive growth stages (R1-R6), were used to assess the impact of five 
management strategies (combinations of cropping systems, tillage practices and crop 
rotations) on grain yield per plant. Stem and leaf dimensions, light penetration within the 
canopy [log (I/Io) x 100], fractal dimension of plant skeletal images (Do) multiplied by leaf 
area index (LAI), and midday differential canopy temperature (dT) explained 84.0% of 
variation among plant samples grown under five different management strategies, with 75-
100% correct classification. Management strategies, growth stages and their interaction 
accounted for a total of 24-79% of variation in different structural dimensions and for 97%, 
97% and 94% of variation in dT, LAI*Do, and log[(I/Io) x 100], respectively. Grain yield per 
plant can be predicted at R3, R4, R5 and R6 with increasing probability (R2= 58, 64, 69 and 
72%, respectively) while decreasing root mean square error of the validation models (from 
2.33 at R3 to 2.1 g per plant at R6) using dT, LAI*Do, and [log(I/Io) x 100] as predictors. 
Key Words: plasticity; fractal dimension; light interception; structural dimension; grain yield. 

INTRODUCTION 
Ontogenetically, crop plants react to environmental (Alados et al., 1998) and 

management (Weiner, 2004) factors in a complex, dynamic manner. Plant size and 
architecture are important factors in determining crop productivity (Vega et al., 2000); 
however, researchers are faced with the problem of developing reliable models for plant 
geometric structure and its relationship to yield and productivity, especially for plants with 
complex structures such as soybean (Foroutan-pour et al., 1999). One approach to solving 
this problem is to use fractal analysis to provide new avenues of understanding the 
functional implications of the branching patterns in relation to optimum space exploration 
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by plants (Weiner, 2004). The fractal dimension (Do) is an effective tool for quantifying plant 
structure, measuring the structural response to cultural practices and modeling plant 
canopies (Foroutan-pour et al., 2000).  

Soybean plant morphology and architecture are determined by branching and internode 
length (Pedersen and Lauer, 2004), whereas its growth and development are affected 
significantly by a cultivar-specific temperature regime (Pachepsky et al., 2004). Plant 
temperature will depend more on air temperature, but may differ from it due to canopy 
characteristics, thermal characteristics of plants and thermal conditions near the soil surface 
(Birch et al., 2003). It was speculated that temperature is a key environmental factor 
interacting with cultivars to influence yield (Pedersen and Lauer, 2003); the largest and 
smallest soybean grain yields were found to correspond well with the highest and lowest 
mean temperature during the growing season, respectively. 

In the time-constrained cropping systems of the upper Midwestern USA, smaller 
soybean yields may be caused by longer time for the plants to reach full light interception; 
the lower rate of crop growth may be because of environmental stress during complete light 
interception or lower crop growth rate and incomplete light interception (Board, 2004). 
Several researchers (Singer, 2001 and references therein) showed that biomass and grain 
yield of soybean are significantly correlated with maximum light interception. Plastic 
responses of plants to light may involve a more efficient arrangement of leaf area to capture 
maximum available light (Semchenko and Zobel, 2005). The reproductive period, especially 
growth stages R1 through R5, (Pedersen and Lauer, 2004) is most sensitive to altered source 
strength and crop growth rate since it is the time during which important yield components 
are formed.  The objectives of this 2-yr study were to (1) quantify the impact of management 
strategies on soybean’s geometric distribution in space and time, and (2) predict grain yield 
per plant as a function of (a) midday differential canopy temperature (dT), fractal dimension 
(Do) and light penetration [Log(I/Io) x 100], and (b) stem and leaf structural dimensions. 

MATERIALS AND METHODS 
FIELD EXPERIMENT 

A long-term field experiment was initiated in 2002 at the Swan Lake Research Farm 
located near Morris, MN (45º 41’ N, 95º 48’W, elevation 370 m) and was designed to address 
multiple agronomic, management, environmental, and economic objectives within the 
context of cropping system research. Field plots (6 x 12 m, total of 192 plots) were established 
in a randomized complete block design with four replications. Treatments include 
conventional and organic systems each with two crop rotations (corn-soybean, corn-soybean-
wheat/alfalfa-alfalfa), two tillage treatments (conventional and strip-till), and two fertility 
treatments (no added fertilizer/manure, and fertilizer/manure applied according to soil 
test). A glyphosate-resistant soybean variety was used in the conventional system, whereas a 
non-genetically modified variety was used in the organic system. Five treatment 
combinations (Table 1) were selected from a total of 24 treatment combinations for this 
study. The CC2 management strategy represents the traditional system used by most farmers 
in the upper Midwestern USA (i.e., conventional system, conventional tillage, with N 
fertilizer as recommended by soil test and a 2-yr crop rotation). CC4 introduces wheat and 
alfalfa and extends the crop rotation to 4 years, CS4 replaces conventional tillage with strip 
tillage, OC4 is the organic system’s equivalent of CC4, and OS4 is the organic system’s 
equivalent of CS4. The land area was uniformly cropped with soybean prior to initiating the 
study to minimize any residual effects of any previous treatments. Historically, the site had 
been cropped in a corn-soybean-spring wheat rotation under conventional tillage. 
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Table 1. Observed level of significance in full (F), reduced (R) and single (S, with largest R2 
and smallest AIC values) variable regression models to predict (Y) midday differential 
canopy temperature (dT), light penetration [Log (I/Io)x100], and fractal dimension (Do) as a 
function of 10 plant traits (X) measured on soybean plants grown under five management 
strategies and sampled during six (R1-R6) growth stages.  

Y X CC2 CC4 CS4 OC4 OS4 
  Model Model Model Model Model 
  F R S F R S F R S F R S F R S 
  Level of significance (p) based on F-statistic (i.e., variance ratios)  
dT SAa 0.12 0.03  0.73   0.77   0.05 0.05  0.02 0.01  
 SP 0.81   0.20   0.30 0.02 0.01 0.93   0.15 0.05  
 SW 0.53 0.01  0.51  0.04 0.03 0.02  0.30   0.90   
 SH 0.22 0.02  0.03 0.05  0.01 0.05  0.90   0.42   
 SC 0.25   0.03 0.02  0.52   0.20   0.26 0.03  
 LA 0.13 0.01  0.10 0.01  0.80   0.02 0.03  0.20  0.04 
 LP 0.33   0.83   0.15   0.41   0.20   
 LW 0.12 0.01  0.44   0.20   0.65   0.05   
 LL 0.02 0.05  0.50   0.80 0.04  0.10 0.02  0.90   
 LC 0.02  0.03 0.02 0.05  0.65   0.05 0.02 0.02 0.90   
                 

 R2 74 78 39 98 98 81 81 83 61 63 66 32 71 72 28 
 AIC 36 30 57 36 29 183 36 28 49 36 29 45 36 28 58 
                 
Log(I/Io) SA 0.35   0.02 0.02  0.12 0.02  0.05 0.02 0.05 0.02 0.02  
 SP 0.30   0.85   0.35   0.05 0.01  0.45   
 SW 0.60 0.04  0.02 0.03  0.75 0.05  0.03 0.01  0.05 0.01  
 SH 0.54   0.02 0.03  0.70   0.50   0.02 0.01  
 SC 0.90   0.17   0.24 0.03  0.02 0.05  0.02 0.05  
 LA 0.44   0.03 0.05  0.15   0.15 0.04  0.03 0.03 0.02 
 LP 0.57   0.03 0.04  0.53   0.46   0.05 0.05  
 LW 0.40 0.05  0.44  0.01 0.02   0.88   0.48   
 LL 0.72 0.01  0.78 0.01  0.01   0.02 0.02  0.01 0.01  
 LC 0.30 0.01 0.03 0.02 0.01  0.15  0.15 0.02 0.02  0.02   
                 

 R2 69 75 28 94 94 48 73 73 32 97 98 77 97 97 69 
 AIC 36 26 54 36 34 210 36 29 58 36 32 232 36 34 248 
                 
Do SA 0.30   0.03 0.03  0.44 0.02  0.05 0.03  0.02 0.02  
 SP 0.61   0.82 0.02  0.75   0.30   0.02 0.02  
 SW 0.70  0.05 0.02 0.03 0.02 0.12 0.02 0.03 0.15  0.02 0.44   
 SH 0.30   0.85   0.02 0.01  0.54 0.02  0.50   
 SC 0.14 0.01  0.25   0.33   0.98   0.75   
 LA 0.30   0.05 0.01  0.85   0.36   0.02 0.01 0.05 
 LP 0.95   0.29   0.85   0.02   0.02   
 LW 0.50 0.01  0.72   0.45 0.05  0.70   0.01 0.03  
 LL 0.10   0.23 0.01  0.52 0.02  0.40 0.02  0.45   
 LC 0.05 0.03  0.55   0.02 0.04  0.05 0.01  0.83 0.05  
                 
 R2 90 91 76 86 88 39 75 81 46 87 87 67 84 84 46 
 AIC 36 27 58 36 28 93 36 27 52 36 30 58 36 32 77 
                 

Correct 
classification, %   

 
100 

 
83.3 

 
75.0 

 
95.8 

 
100 

a SA=stem area, SP=stem perimeter, SW, stem width, SH=Stem height, SC=Stem circularity (i.e., minimum 
axis/maximum axis), LA=Leaf area, LP= leaf perimeter, LW=Leaf width, LL=Leaf length, LC=Leaf circularity. 
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PLANT SAMPLING AND MEASUREMENTS 
Five random soybean plants were sampled at each of the R1 to R6 reproductive growth 

stages from two replicates per management strategy in 2003 and 2004. Digital imagery 
procedures (Rasband, 2004) were used to capture, process, and measure images of single 
stems and detached leaves. Single stems were positioned on a white background so that all 
branches were visible, and whenever possible a 1:1 JPEG image was captured. A scale (in 
cm) was attached to each object (stem or leaves per plant) on a white background, and the 
generated image was saved with a resolution of 300 pixels. The JPEG images were processed 
with ImajeJ, a public domain image processing software by W. Rasband of the National 
Institute of Health, Bethesda, MD (http://rsb.info.nih.gov/ij/) as follows: images were first 
saved as TIF, background was subtracted to eliminate any noise, files were converted to 1-bit 
black and white using the threshold command, skeletal images were developed, then all 
measurements were adjusted based on the pixel-to-cm conversion scale using built-in 
algorithms (Rasband, 2004). The fractal analysis procedure employed the box count concept 
as outlined by Mandelbrot (1983) and applied by Foroutan-pour et al. (2000). Each plant or 
leaf image was covered by a sequence of grids made of squares decreasing in size. Two 
values were recorded per grid, these were: the number of squares intersected by the image, 
N(s), and the side length of the square (s). The regression slope (Do) of the straight line 
formed by plotting log[N(s)] against log(1/s) in the equation: log[N(s)=log(C) + Do*log(1/s), 
where log is the natural log, C is a constant, and N(s) is proportional to (1/s)Do (Mandelbrot, 
1983), is constrained to be in the range of 1.0 ≤ Do ≤ 2.0; a value of 1.0 indicates that the image 
is completely differentiable and that of 2.0 indicates that the image is very rough and 
irregular.  

Biomass and grain yield were estimated at each growth stage on a per plant basis. Plant 
variables (area, perimeter, length, width and circularity of each leaf and stem) and fractal 
dimension (Do) were automatically measured by the ImageJ software and collected on a per 
plant basis, whereas midday differential canopy temperature (dT, i.e., the difference between 
midday canopy and air temperature measured by an infrared thermometer; Isla et al., 1998), 
leaf area index, and canopy light penetration [log(I/Io) x 100] were estimated on plot basis. 
Light penetration was determined according to Board (2004) by a 1-m LI-COR Line Quantum 
Sensor (LI-COR, Lincoln, NE) connected to a LI-1000 data logger. The extinction coefficient 
(k’), which is the fraction of light intercepted per LAI unit, was calculated according to 
Foroutan-pour et al. (2001) using the equation: 

log[(I/Io) x 100] = – k’ (LAI x Do) 
to improve the description of proportional light penetration through the crop canopy 
(Critten, 2003). The expression log[(I/Io) x 100] will be referred to in the rest of the article as 
log(I/Io). 

STATISTICAL ANALYSES 
Homogeneity of variances of data collected during 2003 and 2004 was confirmed using 

the Bartlett test before conducting statistical analyses on the normalized pooled data 
collected on both soybean varieties (StatSoft Inc., 2005b). Patterns of morphological 
similarities or dissimilarities were analyzed by analysis of variance and multivariate 
statistical methods (Hair et al., 1998). All subset regression models with full, reduced and 
single independent variables were developed to estimate dT, log(I/Io) and Do as a function 
of stem and leaf structural variables of plants grown under each of the five management 
strategies. Model selection was based on the largest R2 and smallest Akaike Information 
Criterion (AIC) values calculated by the regression procedure (Payne et al., 2006). General 
linear models (GLM) were developed to quantify variance components in all variables due to 
management strategies, growth stages and their interaction. The principal components 
regression (PCR) analysis was used to analyze morpho-metric patterns of individual plants 
and to quantify possible differences among plants grown under different management 
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strategies. PCR is a two-step method comprised of principal components analysis (PCA) and 
multiple linear regression (MLR) analysis. PCA is carried out on the independent variables 
to develop the smallest number of orthogonal principal components (PCs) that account for as 
much of the variation in the raw data as possible. PCs are then used in multiple linear 
regression of the form 

Y = XB+E, 
where Y is an ‘n’ cases by ‘m’ variables response matrix, X is an ‘n’ cases by ‘p’ variables 

predictor matrix, B is a ‘p x m’ regression coefficient (β) matrix, and E is an error term for the 
model that has the same dimensions as Y. The models developed in this analysis were cross-
validated by successively leaving out data one at a time, and a model was built using the 
remaining data points. Then, the model created was used to predict the dependent variables. 
Calibration and validation models were developed to predict grain yield per plant as a 
function of dT, LAI*Do and log(I/Io) or as a function of stem and leaf structural variables at 
each reproductive growth stage. Root mean square errors (RMSE) and coefficients of 
determination (R2) were calculated for each growth stage. RMSE was used to compare the 
prediction and validation errors of different PCR regression models and was based on the 
differences between the predicted and actual values after all the samples were held-out once. 
RMSE was calculated as:  

RMSE =  ∑
=

n

i

2
ii

n
) y- ŷ(

1
 

where ŷi and yi are predicted and measured Y, and ‘n’ is the number of samples. Statistical 
analyses were performed on normalized mean data values (Hair et al., 1998) for each variety 
and reproductive growth stage, pooled over years and replicates, then back-transformed 
after statistical analyses were conducted. Statistical analyses were performed using the 
relevant modules in STATISTICA (StatSoft Inc., 2005a), GenStat (Payne et al., 2006), and the 
Unscrambler v 9.6 (Camo ASA, Oslo, 2006; Esbensen, 2005) software packages. 

RESULTS 

MODELING CANOPY CHARACHTERISTICS 
Table 1 presents levels of significance in full (F), reduced (R) and single variable (S, with 

largest R2 and smallest AIC values) best regression models to predict midday differential 
canopy temperature (dT), canopy light penetration [log(I/Io)], and fractal dimension (Do) as 
functions of 10 stem and leaf structural variables. The goodness-of-fit (i.e., R2 values) for the 
reduced (R) models was equal to or larger than the R2 values for the corresponding full (F) 
models for all three dependent variables. Largest and smallest R2 values for dT, log(I/Io), and 
Do  were found in plants grown under CC4 and OC4, OC4 and CC2, and CC2 and CS4, 
respectively. These R2 values were associated with the smallest AIC values as compared to 
the corresponding full models. Forty, 56 and 46% of all stem and leaf structural variables had 
a significant (p<0.05) impact on the variation in full models of dT, log(I/Io), and Do, 
respectively. For all five management strategies, more stem (12) than leaf (8) structural 
variables contributed to variation explained in dT; the respective numbers for log(I/Io) and 
Do were 15 and 13 and 11 and 12 structural variables. 

Management strategies differed as to the minimum and maximum amount of variation 
in each of the three dependent variables explained by structural variables in the R models. 
For example, area, length and width of stems and leaves of plants grown under CC2 
explained 78.0% of total variation in dT, whereas 91.0% of variation in Do was explained by 
stem circularity, leaf width and leaf circularity. Stem width was the single most important 
independent variable (i.e., in the S model), with the largest R2 and smallest AIC values, in 
predicting Do of plants grown under four of the five management strategies. Leaf circularity, 
stem perimeter and stem width were significant, independent variables in predicting dT, 
whereas leaf width and leaf circularity were significant independent variables in predicting 
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log(I/Io). Single stem or leaf structural variables (i.e., S models) explained significant 
variation in all three dependent variables; however, the R2 values were associated with AIC 
values larger than those associated with the F or the R models. Plants grown under CC2 and 
OS4 were 100% correctly classified on the basis of their structural variables, dT, Do and 
log(I/Io), whereas 83.3, 75.0 and 95.8% of plants grown under CC4, CS4 and OC4 were 
correctly classified, respectively (Table 1). 

TEMPORAL CANOPY CHARACHTERISTICS 
The dynamics of dT, log(I/Io) and LAI*Do estimated for soybean plots and for each 

management strategy (Figure 1A-D) provide insights into the nature and magnitude of 
structural responses of plants to different cultural practices. Means (± 95.0% confidence 
intervals) of dT (Figure 1A) estimated during the six reproductive growth stages indicate that 
plants maintained lower midday temperatures than the air temperature between R2 and R6; 
however, plants grown under OS4 failed to maintain positive dT values between R4 and R6.  
Most dT estimates fluctuated during the R2 to R6 period, whereas plants grown under CC4 
maintained steady dT values above 10°C. There were significant differences among dT 
estimates between R2 and R6; however, the magnitude of these differences increased with 
time, especially between R5 and R6. The joint estimates of LAI*Do (Figure 1B) suggest that 
there was a gradual decline during most of the reproductive growth period, especially 
between R4 and R6. Differences among most LAI*Do means were significant at each of the 
reproductive growth stages. Plants grown under the conventional system (CC2, CC4 and 
CS4) generally had larger LAI*Do estimates, whereas plants grown under the organic system 
(OC4 and OS4) had significantly smaller LAI*Do values, especially between R5 and R6. 
Canopy light extinction coefficient (k′, Figure 1C) and light penetration, expressed as 
log(I/Io) (Figure 1D), represent two different quantitative descriptors of light interception by 
soybean plants grown under different management strategies and estimated at different 
reproductive growth stages. Canopy light extinction coefficient, but not log(I/Io), is 
proportional to LAI, hence the different dynamics expressed by both statistics. Canopy 
extinction coefficient ranged from a little over 0.25 to about 0.70. There were fewer significant 
differences among mean k′ estimates for management strategies than those for growth stages 
(see below). Differences among mean log(I/Io), whether comparing management strategies 
or growth stages, were less dynamic as compared with mean k′ estimates. 

STRUCTURAL PLASTICITY 
Management strategies, growth stages, and their interaction accounted for different and 

relatively small variances in plant structural components (R2 ranged from 24 in stem length 
to 79% in stem width; Table 2) when compared to the large (94-97%) portion of variance 
explained in dT, LAI*Do, and log(I/Io). Large and significant portions of variation in stem 
and leaf structural variables were accounted for by differences among management 
strategies (34-69%), whereas growth stages (4-34%) and their interaction with management 
strategies accounted for much smaller (5-17%), albeit significant, portions of this variation. 
Growth stages did not account for any significant variation in leaf structural variables. Leaf 
circularity, but not stem circularity, was stable and did not show any plasticity in response to 
management practices.  

Management strategies, growth stages, and their interaction explained most variation 
(93-97%) in dT, LAI*Do, and log(I/Io). Differences among management strategies accounted 
for the largest portion in LAI*Do (47%) and log(I/Io) (59%). Differences among growth stages 
accounted for an equally large (46%) portion of variation in LAI*Do and relatively smaller 
portions in dT (37%) and log(I/Io) (32%), whereas the interaction component between 
systems and growth stages accounted for a large portion (45%) of variation in dT. Single 
plant dry weight, measured throughout the reproductive growth phase, has 73 and 12% of 
its variance accounted for by management practices and growth stages, respectively. 
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C 

 

D 

 

Figure 1(A-D). Mean (± 95% CI) of (A) midday differential canopy temperature, (B) leaf area 
index x fractal dimension, (C) extinction coefficient, and (D) light penetration measured 
during six reproductive growth stages (R1 to R6) on soybean plants grown under five 
management strategies. 
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Table 2. Percent significant (p<0.05) variance in 10 stem and leaf structural variables and 
three derived statistics accounted for by differences among five management strategies, 
reproductive growth stages of soybean, and their interactions. 

Source of variation 
Management 
strategy (MS) 

Growth 
stage (R) 

MS*R 
Variable 

Significant variance component at p<0.05 

Adjusted 
R2

Stem  height 35.0   4.0  24.0 
 width 47.0 18.0 17.0 79.0 
 area 41.0   26.0 
 perimeter 67.0 13.0  75.0 
 circularity   4.0 34.0  32.0 
      
Leaf length 45.0   33.0 
 width 69.0    7.0 75.0 
 area 49.0    5.0 38.0 
 perimeter 47.0   47.0 
 circularity     
     
Differential midday canopy temperature, dT 16.0 37.0 45.0 97.0 
Leaf area index * fractal dimension, LAI*Do 47.0 46.0   6.0 97.0 
Extinction coefficient, k′   9.0 58.0 20.0 85.0 
Light penetration,  log[(I/Io) x 100] 59.0 32.0   4.0 93.0 
     
Dry weight per plant 73.0 12.0  79.0 
Grain yield per plant 79.0   75.0 

 
 
Grain yield per plant measured at harvest has only 69% of its variance accounted for by 

management strategies.  
Average grain yield per plant was 7.32 g, with plants grown under CC4 producing the 

largest (11.2 g) and plants grown under OS4 the smallest (2.32 g) yield (Figure 2A). The 
combined effect of all management strategies, structural components, and derived variables 
explained 43.0% of variation in grain yield per plant. Larger loadings of most structural 
components on the (x) axis were associated with plants grown under the conventional 
system regardless of tillage method or length of the crop rotation, whereas negative loadings 
were associated with plants grown under the organic system.  

The first PC accounted for 33.0 and 71.0% of total variation in the predictors (X) and 
predicted (Y) variables, respectively, and separated plants grown under OC4 and OS4 from 
those grown under the remaining three management strategies. The second PC accounted 
for 18 and 16% of total variation in the X and Y variables, respectively, and it resulted in little 
separation among plants grown under management strategies or among plants based on 
their structural variables as compared to PC1. On average, dT was positively (r=0.55, p<0.05) 
and negatively (r=–0.23, p<0.05) correlated with LAI*Do and log(I/Io), respectively, whereas 
a strong, negative correlation (r=–0.77, p<0.01) was found between log(I/Io) and LAI*Do, and 
the three-way correlation between dT and LAI*Do, log(I/Io) was positive and highly 
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significant (r=0.56, p<0.001).  Most stem and leaf structural variables, especially of plants 
grown under CC2, were associated with both dT and LAI*Do on PC1.  

Plants grown under the traditional management strategy (CC2, Figure 2B) averaged 7.84 
g per plant, with 48.0% of variance in this yield being explained by the predictors. Log (I/Io) 
and LAI*Do loaded on opposite sides of PC2 were significantly and negatively correlated 
with dT and were associated with leaf structural variables, whereas stem structural variables 
except stem width were associated with dT. Plants grown under CC4 produced the largest 
grain yield (11.22 g per plant; Figure 2C), and a much larger cumulative variance (77%) in 
this yield was explained by the predictors as indicated by the large loadings of most 
predictors on PC1. LAI*Do was negatively and significantly correlated with dT (r=–0.68, 
p<0.01) and with log(I/Io) (r=–0.48, p<0.05); the last two variables were positively and 
significantly correlated (r=0.48, p<0.05).   

Grain yield per plant grown under CS4 averaged 7.89 g, with a cumulative variance of 
57% being explained by the independent variables (Figure 2D). Leaf and stem structural 
variables except for leaf perimeter were associated with log(I/Io) and marginally with dT, 
whereas leaf structural variables were associated with LAI*Do.  Bivariate correlations among 
dT, LAI*Do and log(I/Io) were similar to those found in CC4. Plants grown under the organic 
system with conventional (Figure 2E) or strip (Figure 2F) tillage produced the smallest grain 
yield per plant (5.37 and 2.23 g, respectively). Under OC4 and OS4, 50 and 60% of 
cumulative variance in this yield was accounted for by the independent variables, 
respectively; however, most of this variation was accounted for by variation among stem and 
leaf structural variables. A small amount of variation in grain yield per plant was accounted 
for by dT, LAI*Do, and log(I/Io) as measured by their loadings on PC1.  

GRAIN YIELD PREDICTION 
Calibration and validation regression models for grain yield (g per plant) of soybean as a 

function of dT, LAI*Do, and log(I/Io) (Model I) or as a function of 10 stem and leaf structural 
variables (Model II) measured on plants sampled during six (R1-R6) growth stages and 
grown under five management strategies are presented in Table 3.  

Table 3. Calibration and validation regression models to predict grain yield (g per plant) of 
soybean as a function of dT, LAI*Do, and log(I/Io), and stem and leaf variables measured on 
plants grown under five management strategies and sampled during six (R1- R6) 
reproductive growth stages.  

Calibration model Validation model  Predictor Growth 
stage r α β RMSEc R α β RMSEv R2

Model I R1 0.72 3.49 0.52 2.47 0.65 3.85 0.48 3.20 0.52 
dT, LAI*Do R2 0.70 3.32 0.52 2.53 0.64 3.79 0.48 2.98 0.53 
and Log(I/Io) R3 0.76 3.00 0.58 2.66 0.72 3.27 0.55 2.33 0.58 
 R4 0.80 2.67 0.63 2.30 0.76 2.79 0.61 2.50 0.68 
 R5 0.85 2.07 0.73 2.09 0.82 2.20 0.70 2.10 0.69 
 R6 0.85 1.98 0.72 1.87 0.81 2.10 0.71 2.10 0.72 
           

Model II R1 0.37 6.29 0.13 3.32 0.16 8.58 0.12 4.90 0.41 
Stem and R2 0.73 3.43 0.53 2.45 0.65 3.88 0.46 2.73 0.63 
leaf variables R3 0.80 2.56 0.64 2.48 0.68 3.20 0.55 2.76 0.65 
 R4 0.81 2.50 0.65 2.50 0.68 3.10 0.56 2.79 0.66 
 R5 0.83 2.30 0.68 2.56 0.70 3.00 0.58 2.87 0.66 
 R6 0.85 2.07 0.72 2.63 0.73 2.74 0.62 2.97 0.70 
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Figure 2A-F. Cumulative variance in grain yield (g per plant) and loadings on the first two 
principal components (PC) in a PC regression to predict grain yield per plant as a function of 
dT, LAI*Do, log(I/Io), and 10 structural variables of soybean plants. 
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Correlation coefficients between measured and predicted grain yield for the calibration 
stage of Model I increased from 0.72 (R1) to 0.85 as the plants approached maturity (R6); the 
respective R values for the validation stage were smaller (0.65 to 0.81), albeit significant 
(p<0.05). Similarly, correlation coefficients for the calibration and validation stages of Model 
II were significant (p<0.05), except for the validation stage at R1 which was associated with a 
large root mean square error (RMSEv=4.9). RMSE values for the validation stage (RMSEv) of 
both models were always larger than those for the calibration stage (RMSEc), and this was 
reflected on the model fit as expressed by the R2 estimates (Table 3). Additionally, RMSEc 
and RMSEv estimates decreased as the plants approached maturity and were almost always 
smaller than the intercept of their respective regression models. Moreover, the slope of the 
regression models (i.e., the rate of grain yield increase per unit increase in the predictors) 
increased steadily as the crop approached maturity. The R2 estimates suggest that either 
model can be used to predict grain yield per plant, and that the reliability of this prediction 
increases as plants approach maturity. 

DISCUSSION 
The dynamic temporal interrelationships among stem and leaf structural variables were 

successfully used in developing reliable models for plant geometric structure and its 
relationship to yield in soybean plants, an objective considered difficult, especially for plants 
with complex structures (Foroutan-pour et al., 1999). Different management practices create 
different micro-environments where a genotype is capable of giving rise to different 
phenotypes (Pachepsky et al., 2004; Weiner, 2004). This environment-dependent phenotypic 
expression (i.e., phenotypic plasticity; Weiner, 2004) was expressed by soybean at different 
hierarchical levels of complexity (Table 1; Figure 2). The stem and leaf structural variables 
responded quantitatively in different manners to changes in management practices, 
impacted dT, LAI*Do and log(I/Io), and provided insights into how single plants adjust their 
architecture, interact with their environment, and  determine grain yield. Plant architecture 
has been shown to impact grain yield in many crops (Cheplick, 2002) including soybean 
(Foroutan-pour et al., 2000). Soybean plants in this study displayed a large level of structural 
plasticity that was expressed by all stem and leaf structural variables, but mainly by stem 
area and stem width. These two variables are expressions of different branching patterns and 
are quantified as Do estimates.  

Large percentages of correct classification (75.0-100.0%) of plants into their original 
categories (i.e., management strategies under which they were grown) indicate that plants 
differed in both the magnitude and direction of phenological responses to contrasting 
cropping systems, tillage and crop rotations. Additionally, these phenotypic responses 
triggered significant differences among dT, LAI*Do, and log(I/Io) estimates of plants grown 
under different management strategies. Differences among dT and among log(I/Io) estimates 
were mainly due to cropping systems, whereas differences among LAI*Do estimates were 
mainly due to tillage.  

Changes in dT, LAI*Do and log(I/Io) were significant over time, reflecting changes in 
plant development. Thus, the level of complexity in skeletal structure of soybean plants 
increased as the stage of growth advanced. Additionally, dT, LAI*Do and log(I/Io) provided 
a meaningful and effective tool for quantifying plant structure, measuring the structural 
response to cultural practices, and modeling plant canopies and grain yield. It was 
speculated (Pedersen and Lauer, 2003) that temperature may interact with soybean cultivars 
to influence grain yield; however, in this study, it was the midday differential canopy 
temperature (dT) in addition to LAI*Do and log(I/Io) that significantly impacted grain yield, 
especially towards the end of the reproductive growth phase. The value of dT depends on air 
temperature, but may differ from it due to canopy characteristics, thermal characteristics and 
thermal conditions near the soil surface. Reliability of the predictive equations (expressed as 
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R2-values) increased as the plants grew and changed the microenvironment within the 
canopy, and with time as suggested by Birch et al. (2003). Further evidence on how grain 
yield responded to adjustments in plant architecture, which in turn responded to 
components of different management practices, is quantified in Figure 2A. The larger grain 
yields per plant (7.84-11.22 g) were positively associated with LAI*Do. The increased 
complexity of branch structure, which was measured by LAI*Do, is expected (Alados et al., 
1998) to enhance energy flow and nutrient cycling in plants, eventually increasing grain 
yield. This phenotypic plasticity is known (Semchenko and Zobel, 2005) to optimize the 
capture of different resources in a manner that maximizes plant growth. Trait loadings on 
PC1 accounted for >70% of variation in grain yield (Figure 2A-F). Cumulative grain yield 
variance accounted for by these traits and correlation coefficients among dT, LAI*Do, and 
log(I/Io) provided quantitative comparisons among different management strategies. 
Additionally, their impact on phenotypic plasticity can be visually deduced. For example, 
the only difference between CC4 (Figure 2C) and CS4 (Figure 2D) is the use of strip tillage in 
CS4 instead of conventional tillage. Strip tillage failed to create the same 
“microenvironment” for single plants to fully develop as can be seen by comparing mean dT, 
(Figure 1A) and LAI*Do (Figure 1B) of plants grown under CC4 and CS4. As a result, grain 
yield per plant was reduced by about 30.0%, and the cumulative variation in grain yield per 
plant accounted for by all variables was reduced from 77 to 60% due to strip tillage. 
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