
http://agrobiol.sggw.waw.pl/cbcs 

Communications in Biometry and Crop Science 
Vol. 2, No. 1, 2007, pp. 32–40 

International Journal of the Faculty of Agriculture and Biology,  
Warsaw University of Life Sciences, Poland 

REGULAR ARTICLE  

Experimental design for one-sided confidence intervals or 
hypothesis tests in binomial group testing 

Frank Schaarschmidt  
Institute of Biostatistics, Leibniz University Hannover, 30419 Hannover, Germany.  
E-mail: schaarschmidt@biostat.uni-hannover.de 

CITATION: Schaarschmidt, F. (2007). Experimental design for one-sided confidence intervals 
or hypothesis tests in binomial group testing. Comm. Biometry Crop Sci. 2 (1), 32–40. 

Received: 16 February 2007, Accepted: 19 April 2007, Published online: 16 May 2007 
© CBCS 2007 

ABSTRACT 
A common statistical issue in seed-quality control is to prove that the proportion of 
individuals showing an unwanted trait is less than a small threshold. Group testing can be 
used to reduce costs of assay and upper confidence limits for the proportion of detrimental 
individuals can be used for either estimation or hypothesis testing. A crucial problem of 
group testing is the appropriate choice of group size in dependence of the number of groups, 
an assumed true proportion, and the threshold. This paper reports on experimental design to 
achieve high power for tests or low confidence interval width. Two agricultural applications 
are presented for which experimental design is discussed. 
Key Words: group testing; confidence limit; experimental design; power; seed testing. 

INTRODUCTION 
Group testing is used for inference on small binomial proportions if the assay method is 

sensitive but expensive (Thompson, 1962; Swallow, 1985; Tebbs and Bilder, 2004). Groups of 
individuals are characterized instead of single individuals, so that the possible outcomes are: 
a negative group if all individuals are negative or a positive group if at least one individual 
is positive. Interest might still be in hypothesis testing or estimation of the proportion of 
positive individuals. For example, a common problem in seed-quality control is to prove that 
a certain detrimental trait is rare in a population of individuals. Regulation No. 1829 of the 
European Union (Anonymous, 2003) requires that the proportion of genetically modified 
(GM) seed impurities be lower than 0.005 in a seed lot. In this case, a threshold is defined a 
priori, and interest is in rejecting the H0: π ≥ 0.005 in favor of H1: π < 0.005. This can be 
performed by a one-sided test or, alternatively, an upper confidence limit for π can be 
estimated. The null hypothesis is rejected if the confidence limit is lower than 0.005. In other 
situations, no a priori-defined threshold is available. Similar problems arise in plant breeding, 
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and surveillance programs for plant, animal or human diseases (Gu et al., 2004), where a 
population is regarded as unsafe or not marketable if the proportion of an unwanted trait 
exceeds a small threshold level.  

In group testing, experimental design is a crucial issue. The inappropriate choice of 
group size for a given number of groups and given proportion can result in bias of the point 
estimator (Swallow, 1985), decrease of power and increased confidence width. Therefore, this 
paper focuses on experimental design under different restrictions and considers different 
methods for estimation of upper confidence limits. Power is of main interest for hypothesis 
testing against a priori known thresholds. If the only objective is to estimate confidence 
limits, experimental design can be used to achieve a minimal expected confidence interval 
width.  

ASSUMPTIONS AND NOTATION 
Interest is in the estimation of the proportion π of a rare trait in a population. The event 

that an individual shows this trait is assumed to be independent and identically distributed 
(i.i.d.) Bernoulli for each individual in a population. In group testing, with equal group sizes, 
ns individuals are assigned randomly to n groups or bulks, each containing s individuals. 
Biological or biochemical assays are performed on each group, and the outcome is denoted 
‘positive’ if at least one positive individual is in the group and is denoted ‘negative’ only if 
all individuals in the group are negative. It is assumed that the assay method has sensitivity 
and specificity 1, i.e., it is able to detect a group as positive if at least one positive individual 
is present in the group of size s. The number of positive groups is denoted y, and t = y/n is 
the estimated fraction of positive groups. Here y is the realization of a binomial random 
variable Y ~ Bin(n, θ), where θ is the unknown probability of finding a positive group. In 
group testing, information on the proportion π is gained from negative groups. The 
probability of finding a negative group is 1–θ = (1–π)s. An estimator for π can simply be 
derived by replacing θ by its estimator t: p = 1–(1–t)1/s. This estimator is positively biased 
(Swallow, 1985); the bias becomes large as the probability of observing only positive groups 
becomes large.  

Note that the statistical methods described below are valid only if assumptions of perfect 
sensitivity and specificity are met. Assays with sensitivity < 1 might lead to point estimates 
with less positive and even negative bias; the corresponding confidence intervals can have 
coverage probability < (1–α), and tests can have size > α. Assays with specificity < 1 lead to 
overestimation of π, corresponding confidence intervals and tests are too conservative. 
Especially, too large a group size might decrease assay sensitivity. Therefore, in addition to 
the statistical aspects discussed below, assay sensitivity should be considered when planning 
experiments. 

ONE-SIDED CONFIDENCE LIMITS FOR A PROPORTION ESTIMATED FROM GROUP TESTING 
Tebbs and Bilder (2004) investigated seven methods for construction of confidence 

intervals for π, which can be constructed directly on the scale of individuals or on the scale of 
groups. In the second approach, a confidence limit tU is constructed for the proportion of 
‘positive groups’ θ, and an upper confidence limit pU for the probability π  
then is: pu = 1–(1–tu)1/s. This approach is attractive because of computational simplicity and 
the possibility of making use of well-described interval methods for single binomial 
proportions, and, thus, it will be used below.  

A large variety of methods is available for estimation of confidence intervals for a 
binomial proportion. The upper exact (1–α) confidence limit (Clopper and Pearson, 1934) can 
be calculated using the quantiles of the F-distribution: 
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where n denotes the number of groups, y is the number of observed positive groups, and F is 
the quantile of the F-distribution.  

The mean coverage probability of several recently recommended asymptotic confidence 
limits is closer to the nominal level than that of the exact Clopper-Pearson limit, but they 
allow violation of the nominal level. The widely known Wilson-Score limit performs well for 
even moderate to small sample sizes if two-sided estimation is considered, but the upper 
limit is conservative for proportions close to 0 and liberal for proportions close to 1  
(Cai, 2005). The upper (1–α)-Wilson-Score confidence limit can be calculated using the 
quantiles z of the standard normal distribution: 
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with t=y/n. 
Because asymmetry of coverage is undesired particularly for one-sided estimation, Cai 

(2005) proposed the Second-order-corrected limit. Its upper (1–α) - limit is given as: 
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12 += α−zk , and z is the quantile of the standard normal distribution. The Second-

order-corrected interval may give upper limits larger than 1 for small sample sizes and may 
exclude the estimate p=1 in some cases of y=n for large sample sizes. Therefore, its upper 
limit should be restricted to [0, 1] and additionally is defined as 1 for the case y=n in the 
following applications.  

However, if in practice the case y=n is observed for a certain group size s, one can 
perform an additional number of assays with a reduced group size. Subsequent point and 
interval estimation for π, based on the combined results of the two experimental steps, can be 
performed via the methods described in Hepworth (1996, 2005). 

EXPERIMENTAL DESIGN 
In the following section, experimental design for group testing will be considered from 

different viewpoints. Both number of groups n and group size s influence the performance of 
the confidence interval methods. Three different practical situations are considered: 1) Group 
size s might be restricted due to assay sensitivity, and the number of groups n has to be 
chosen. 2) The number of assays n is limited by cost, but the total number of units ns and the 
group size s can be chosen without serious limitation. 3) The total number of units ns might 
be limited and at the same time the number of assays n might be limited.  

In group testing, the probability Pr(Y=y) depends on the binomial parameter θ,  
where θ = 1–(1–π)s: 
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By multiplying with an indicator function I() for a certain event and summation across 
all possible realizations of y=0, …, n, the expectation of this event can be calculated for given 
parameters. Here, power will be defined as the probability Pr(pU<π0|π) that the upper limit 
pU excludes a threshold proportion π0. To calculate power for a given nominal α, the indicator 
function I(y, n, s, π0) = 0 if the limit does not exclude the threshold π0, and I(y, n, s, π0) = 1 if 
the limit excludes the threshold and consequently H0 is rejected. 
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Expected interval width, bias of the point estimator (Swallow, 1985) and coverage 
probability of confidence intervals can be calculated by equation (2) together with an 
appropriate definition of indicator functions. Defining I(y, n, s)=pv–pL is straightforward in 
the case of two-sided intervals. For upper confidence limits, the expected difference between 
the assumed true parameter π and the upper limit I(n, s, y, π)= pv–π can be considered a 
criterion for the precision of the confidence limit. However, in practice π is unknown, and 
experiments have to be planned based on an assumed value of π. Here, an upper bound of 
interest for π might be defined using data from previous trials, or in quality control, the 
largest expected impurity might be defined by convention. It is assumed that there is no 
interest in precise estimation if the true proportion is larger than that value. If a design {n, s} 
has sufficient power or acceptable interval width for this assumed π, it will have higher 
power and lower interval width for all smaller proportions. When interest is in a precise 
estimation across a broad range of π, experimental designs using different group sizes 
following Hepworth (1996) are recommended. 

CHOICE OF N WHEN S IS FIXED 
In the first situation of a certain fixed group size s, the interest lies in finding an 

appropriate number of groups n. This problem is similar to that of sample size calculation in 
simple binomial testing (s=1) (Chernick and Liu, 2002). The same transformation p=1–(1–t)1/s 
is always applied if the group size s is fixed; therefore, the power properties known from s=1 
are truncated towards smaller values of π. Power increases for increasing n in a non-
monotone manner until power close to 1 is achieved for n smaller than in the situation s=1. 
Expected width of confidence limits shows a monotone decrease for increasing n. 

CHOICE OF S WHEN N IS FIXED 
The second situation, i.e., finding an appropriate group size s while other parameters are 

fixed, is more interesting than the previous situation. This problem arises if the assay method 
is sufficiently sensitive and specific across a wide range of group sizes and single individuals 
can be supplied without serious limitations. Figure 1 illustrates how increasing the group 
size s influences the coverage probability, the power to reject H0: π ≥ 0.005, the expected 
distance between true proportion π and the upper limit for the three methods and the bias of 
point estimator. The confidence level of upper limits is 95%, and the assumed true 
proportion is π=0.003. Here, the number of groups is kept constant at n=30, but the total 
number of individuals ns, which contribute to the observations, is increased from 30 to 60000 
by increasing the group size s from 1 to 2000. This leads to an increasing power for small 
proportions in group testing. If the group size is too large for a given π and n, the risk to 
observe y=n is increased, resulting in a greatly biased estimator. Therefore, power decreases 
for too large group sizes; simultaneously bias increases. Which group sizes s are actually too 
large depends not only on π but also on n. 

The power to reject H0: π ≥ 0.005 differs between methods because of different coverage 
probabilities. For a given π and method, a local maximum of power is found for those 
combinations of n, s, α for which the coverage probability has a local minimum for the case 
that H0: π = π0 is true (see Schaarschmidt, 2005 for details). The interval first decreases in 
comparison to the situation s=1, stays on a low level across a large range of s and increases 
largely for those group sizes that lead to a large bias of the estimator. The methods differ 
only slightly with respect to their minimal expected width and the corresponding group size. 
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Figure 1. Coverage probability, power to reject H0: π ≥ 0.005, expected interval width and bias 
(p) for increasing group size s=1,…,2000, for the upper 95% exact Clopper-Pearson, Second-
order-corrected and Wilson-Score limit in the situation n=30, π=0.003.  

CHOICE OF S AND N WHEN TOTAL NUMBER OF INDIVIDUALS IS FIXED 
In the third situation, supply of individuals for testing purposes is limited and also the 

assays are expensive and restrict the number of observations n. For example, in seed testing, 
only a limited number of seeds is available for destructive assay methods; or in surveillance 
of population of virus vectors (Gu et al., 2004), the sampling of large numbers of individuals 
might be very time consuming. Then, a given number of individual units might be divided 
into either many small groups or a few large groups. Here interest is in the question, which 
setting can be chosen to decrease assay costs without too large a loss of power or 
unacceptable increase of confidence interval width. Starting from the binomial case of 
evaluating all individuals separately, power does not decrease substantially if units are 
assigned to groups of increasing size, as long as the number of groups does not become too 
small and bias of estimator stays negligible. This is shown for one particular situation in 
Table 1: 2400 units are assigned to groups of different size; the probability of an upper 95% 
exact confidence limit to exclude 0.005 is calculated for the case that the true proportion is  
π = 0.002 for each resulting group testing design. For this small proportion, the assay affords 
(the number of assays n) can be reduced from n=2400 to n=200 by increasing group size from 
s=1 to s=12 without reducing power. Designs with lower number of groups and further 
increased group size lead to substantial loss of power compared to the binomial case n=2400, 
s=1.  
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Table 1. Upper 95% exact Clopper-Pearson limit: Power to reject H0: π ≥ 0.005 and expected 
interval width for the situation π = 0.002 and different number of assays n and group sizes s 
resulting in constant total number of units ns=2400. 

Number of assays 
n 

Group size s Power Expected limit 
width (pU-π) 

Bias (p) 

2400     1 0.791 0.00223 0 
1200     2 0.792 0.00223 0.0000007 
  800     3 0.793 0.00223 0.0000008 
  600     4 0.793 0.00224 0.0000013 
  400     6 0.795 0.00224 0.0000021 
  300     8 0.797 0.00225 0.0000029 
  200   12 0.800 0.00225 0.0000046 
  100   24 0.671 0.00228 0.0000099 
    50   48 0.693 0.00233 0.0000208 
    25   96 0.585 0.00246 0.0000449 
    10 240 0.679 0.00309 0.0002114 
      8 300 0.473 0.00509 0.0019196 
      6 400 0.556 0.03170 0.0281089 

 
Unfortunately, the pattern of power development depends on the particular values of ns, 

α,  π, π0, and the method used. The positions {n, s} of local power maxima depend on α, π0, 
and the interval method only. They correspond to the local minima of coverage probabilities 
for these n, s, α for the case of π= π0.  

Software is needed to find appropriate designs under different restrictions. Functions for 
evaluation of group testing experiments, power calculation and sample size iteration are 
available for R (R Development Core Team, 2005) in the package binGroup 
(http://www.biostat.uni-hannover.de/research/thesis). 

EXAMPLES 
The first example is concerned with testing conventional seeds for presence of 

genetically modified (GM) organisms. Interest is in rejecting H0: πGM ≥ 0.005 in favor of  
H1: πGM < 0.005. In an experiment (K. Weissleder and KWS Saat AG, 2005, personal 
communication), 63000 seeds were assigned to 21 groups, each containing s=3000 seeds. 
Twenty groups were found GM-negative, Y=1 group was GM-positive, resulting in the 
estimator pGM = 1–(1–1/21)1/3000= 0.000017. An exact upper 95% confidence limit for the 
proportion of GM-seeds in the population is pU(GM)=0.000077. Based on the exact method, the 
null hypotheses can be rejected, because with 95% probability the proportion of GM-seed in 
the seed lot is not greater than about 0.00008, i.e., the threshold proportion 0.005 is not 
included in the upper confidence limit. The upper 95% confidence limits according to the 
Second-order-corrected and the Wilson-Score method are pU(GM)=0.000064 and 
pU(GM)=0.000069, respectively.  

The above test controls the consumers risk at level α=5%, while the producers risk is the 
type-II error of the above procedure, i.e., the risk that a seed lot is considered to contain  
πGM ≥ 0.005 although this is not the case. Therefore, a sufficient power of tests in quality 
control is in the interest of companies concerned with marketing of seeds. Assume that not 
more than 21 assays per seed lot can be afforded, and interest is in a sufficiently low 
producer risk for true GM proportions up to π=0.003. Is the chosen group size s=3000 
optimal or can a more appropriate group size be chosen? 

 

http://www.biostat.uni-hannover.de/research/thesis
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In the left side of Figure 2, power for the given situation is calculated for increasing 
group size s=1,…,3000. The total number of seeds is increased from ns=21 to ns =63000. 
Power increases in a non-monotone manner by increasing group size and reaches its highest 
value for s=462. Power is decreasing for larger s because the probability, that all 21 groups 
are positive, increases. The right side of Figure 2 shows power and coverage probability to be 
dependent on π for group sizes s=462 (solid line) and s=461 (dashed line). The design with 
optimal group size s=462 has higher power than the design with group size s=461 for the 
whole range of π and the given alternative hypothesis. Note that coverage probabilities for 
both group sizes differ under the margin of the alternative hypothesis π=π0=0.005. For s=462, 
coverage probability is 0.9503, while for s=461, coverage = 0.9861. 

 
 

 

Figure 2. Dependency between power and choice of group size for the upper 95% exact 
Clopper-Pearson confidence limit for rejection of H0: π ≥ 0.005 if the number of groups is 
fixed n=21. 

The second example relates to resistance breeding. A dominant gene-controlled 
resistance can be detected using a co-dominant molecular marker, i.e., single plants can be 
classified as resistant (RR, Rr) and susceptible (rr). The molecular marker is sensitive to 
detect a single R or r allele in bulk samples of up to 5 plants. Objective is to select lines with a 
low proportion of individuals carrying allele r, i.e., lines with a high proportion of true 
breeding RR individuals. In an experiment, 290 individual plants of a single inbred line were 
assigned to n=58 bulk samples, each consisting of s=5 plants (K. Weissleder and KWS Saat 
AG, 2005, personal communication). Fifty-seven groups showed response of R alleles only. 
The Y=1 group showed response of R and r allele, thus contained at least one r allele. The 
estimated proportion of non-RR individuals in the population is  
pno--RR=1–(1–1/58)1/5= 0.003472; an upper 95% Second-order-corrected confidence limit for the 



Schaarschmidt  – Exper imenta l  des ign for b inomia l  group test ing 39 

proportion of non-RR groups is [0; 0.0665] and the corresponding 95% interval for the 
proportion of non-RR individuals is [0; 0.0137].  

Here, experimental design might be based on expected interval width. If 290 individuals 
of an inbred line are used for testing, which combination {n, s} will result in limits that still 
show acceptable interval width? Below, it is assumed that the breeder is interested in a 
precise estimation of lines that contain π ≤ 0.01, i.e., 1% of individuals with r-alleles. 

 

Table 2. Expected interval width of upper 95% Second-order-corrected limits for π=0.01 and 
different combinations {n, s} resulting in a total number of units ns = 290. 

Number of groups n Group size s Expected interval 
width for π=0.01 

Interval width relative 
to s=1 

290   1 0.01331 1 
145   2 0.01336 1.004 
  58   5 0.01351 1.015 
  29 10 0.01377 1.035 
  10 29 0.01504 1.130 
    5 58 0.03436 2.581 

 
If 290 individuals are assigned to groups of size s=1, 2, 5, 10, 29 or 58 individuals, upper 

95% second-order-corrected limits will have the expected widths shown in Table 2, if the true 
proportion of individuals with susceptibility allele is π=0.01. Using a more sensitive assay 
method allowing larger group sizes, a design with n=29 assays and bulk sample size s=10 
would result in only about 3.5% longer confidence limits than applying n=290 assays on each 
individual plant (s=1).  

DISCUSSION 
From a practitioner's point of view, the statistical assessment of small proportions of 

unwanted traits can be approached by estimation of upper confidence limits, which can be 
used for estimation and decision making concerning whether the proportion of detrimental 
individuals is lower than a certain threshold.  

For estimation and hypothesis testing of small proportions using group testing, the 
choice of experimental design is crucial to achieve negligible bias (Swallow, 1985; Remund et 
al., 2001). We examined experimental design to achieve a sufficient power of the test 
procedure or a sufficient width of confidence intervals. Particularly, the group size is of 
importance: while too small groups can lead to the situation that the null hypothesis cannot 
be rejected at all, too large groups can result in a severe downturn of power and increase the 
interval width. Power functions in dependence of the number of groups or the group size are 
non-monotone because of the discrete nature of the binomial distribution. If a practitioner 
has at least some freedom to choose the number of groups n or the group size s, designs 
should be chosen that result in much higher power than others. For a given method and 
nominal level, which combination {n,s} results in a design with locally maximal power 
depends only on the a priori-defined threshold proportion. 
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