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ABSTRACT 
Nowadays, we cannot imagine conducting analysis and creating any graph without support 
of various computer programs. They make researchers’ work easier. No matter how good 
their computer skills are, it is always nice to have some help, and that is what default settings 
usually are for. It is believed that using default settings of graphical software, one should not 
worry about choice of graph settings. But is it actually true? Perhaps researchers are putting 
too much trust in default settings? In this article, we will try to show that default settings are 
not always as helpful as it seems. We will demonstrate this with examples of three packages 
in R: graphics, lattice and ggplot2. 

Key Words: default settings; graphs; R environment. 

 
 

INTRODUCTION 

A scientific publication is one of various methods of presenting research results to fellow 
researchers. Nowadays, any research publication is made using computer resources  that 
helps collect and analyze data, edit and format text, make tables and graphs. As researchers 
related to data analysis and scientific visualization, we cannot imagine our research without 
programs such as R, SAS, Statistica, Statgraphics, MATLAB, spreadsheet software (Excel or 
Calc) etc. Some of these programs are quite simple to use while others require basic or even 
advanced programming skills. A choice of right software usually depends on our 
preferences, skills, or purposes of the analysis. These programs have much in common as 
they all provide a multitude of built-in functions and tools, and each of them has default 
settings. In many situations, default settings will be useful indeed. In many other situations, 
however, they can cause problems when one starts trusting them too much: they can mislead 
us into feeling that we do not have to worry about every detail – because the default settings 
do it for us.  
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In this paper, we discuss problems related to default settings of graphs. So far, only a 
few authors have noticed that default settings of graphs can cause problems (Bergman et al. 
1995, Reese 2006, Su 2008, Rougier et al. 2014). Other authors pointed out that the creation of 
a graph should be a well-thought process (e.g. Tufte 1991, 1997, 2001, Cleveland and McGill 
1985, Cleveland 1993, 1994, Yandell 2007, Kozak 2010). In this paper, we focus on R 
environment (R Core Team 2015), one of the most popular and free tools for data analysis 
and presentation these days. We will try to show some issues related to default setting of 
graphs with two simple examples based on a graphical function in R using packages 
{graphics}, {lattice} and {ggplot2}. However, conclusions obtained here can be easily 
applied to other functions and computer programs. 

Example 1: Default settings of the legend in graphics and lattice packages. 
Each R function has default settings (parameters), which are used when a function is 

called without specifying this parameter. Let the example be the simplest function used to 
create a scatter plot − plot() in the package {graphics} (R Core Team, 2014): 

plot(x, y, ...) 

where x, y are coordinates of the points, and (...) are other/optional graphical parameters 
which are passed to the methods used in the function body and are not listed directly. 
Depending on the type of the input data, different plot methods are called to handle the 
input data. For vectors the plot.default() function is called. To create a graph this function 
required only the data, that is, x, y coordinates for all points. The plot.default() 
automatically sets graphical parameters of the plot such as type of points, axis scales, label 
for the x and y axis etc. (for more details see ?plot.default). For this example, we used only 
a fragment of data from australia.soybean datasets released in the package {agridat} (Wright 
2014) and provided by Basford (1982) and Kroonenberg and Basford (1989). Figure 1 presents 
the relationship between protein content and yield seed for 16 genotypes of soybean (Glycine 
max) in one location (Lawes) in 1970 year (see Box 1).  

A separate function legend () is used to add a legend to the plot (in the package 
{graphic}). In this function, we do not choose where the legend is placed on the graph 
region (the whole area that the graph takes). The default location is inside of the plotting 
region (the area bounded by the axes of the graph), which contains data region (where points 
are plotted). The legend() requires x and y coordinates or keyword for set position of the 
legend (all arguments can be found calling up ?legend). Thus it is not possible to put legend 
outside of the plotting region. In Figure 1, the legend is set in the top right corner of the plot. 
However, after a more careful look we will see that it covers one of the points, that 
representing genotype 17 (under the genotype 25). Of course, we want to fix this error 
immediately, but how exactly are we supposed to do that? The space inside the plotting 
region is too small to place the legend there because it will always cover the data (Figure 1).  

In general, one can say that the default settings of a function are poorly designed when 
they force the function to do something which is against the principles of a proper 
construction of the graphs (e.g. Cleveland 1994, pp. 46-49, Kozak 2010). The legend inside the 
plotting region often interferes with the data, thereby making their analysis more difficult; 
thus, the usefulness of the graph decreases. According to Cleveland (1994), only data points 
should be placed in the plotting region. Exceptions to this rule can be specific, important 
(usually short) information supporting analysis or presenting the data, e.g., a regression line 
or equation. Unfortunately, the legend is often put inside the plotting region (e.g. Maddonni 
et al. 2006, Timsina and Humphreys 2006, Lamkey and Lorenz 2014, Melchinger et al. 2015, 
Morrison et al. 2015).  
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Figure 1. This scatter plot shows 16 genotypes of soybeans (Glycine max) in Lawes location 
and 1970. The x-axis represents protein content (%) while the y-axis represents yield (t ha-1). 
Different types of symbols and colors represent genotypes from G13 to G28. The graph was 
created using the basic package in R {graphics} with default settings putting the legend 
inside the plotting region. The legend hides one of the points representing genotype G17. On 
the graph, the type and color of points are also set by default, and they are not easily 
distinguishable. 

 

Box 1: Scatter plot with legend created in {graphics} package 

install.packages("agridat")  #install package 

library(agridat) #loading package with data 

str(australia.soybean) #see structures of data 

#chose 16 genotypes 

which.gen.take <- c("G13", "G14", "G15", "G16", "G17", "G18", "G19", "G20", "G21", 

"G22", "G23", "G24", "G25", "G26", "G27", "G28") 

data_gen <- subset(australia.soybean, gen %in% which.gen.take) 

data_gen$gen <- factor(data_gen$gen) 

#subset data from location Lawes in 1970 year 

data <- subset(data_gen, env == "L70")  

#draw a graph 

windows(w = 5.5, h = 5)  #Windows system only 

par(mar = c(5, 5, 2, 2)) 

plot(data$protein, data$yield, 

 pch = 1:16 , 

 col = 1:16 , 

 xlab = "Protein %", 

 ylab = expression(paste("Yield seed t ", ha^-1))) 

legend("topright",  

 legend = data$gen,  

 col = 1:16, 

 pch = 1:16) 

It is not, however, a question whether the legend covers the observation like on Figure 1 
or not, but that it should not be there at all. The point is that users of the function (and 
graphing software in general) believe the default settings should be designed to help them 
by offering “optimal solutions.” In fact, the default settings are designed to help the user not 
to worry about some detailed settings of the graph, but they are certainly not designed to 
thinking for the user.  Rougier et al. (2014) writes, "default settings are good enough for any 
plot but they are best for none." The graph in Figure 1 has more elements that could be 
changed to improve the readability of the graph and which are set as default. For example, 
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the types and colors of points used in the graph are less readable than they could be. In 
Figure 1, it is difficult to distinguish the genotype 19 and 27 because they are marked with 
similar shape and color of the symbols (yellow squares). 

In R environment, various graphical packages are better or worse adapted to the 
principles of a proper construction of  scientific graphs. Yandell (2007) noticed that the choice 
of a package can enhance or limit our ability to analyze or present data. We absolutely do not 
claim that the {graphics} package is essentially bad. We can use functions like plot() and 
legends() of the {graphics} package and throw legend outside of plotting region by force. 
But it cannot be done in a simple manner by changing the default settings. However, we also 
may use a package with better default settings, for example one which automatically sets the 
legend outside the data region: it can be the package {lattice} (Sarkar 2008) or {ggplot2} 
(Wickham, 2009). Figure 2 shows the same data as Figure 1, but now the legend is outside of 
the data region. We used a function xyplot() from the {lattice} package (Box 2) and this 
time the legend does not hide anything.  Furthermore, compared to the Figure 1, we also 
changed default settings and used some easily distinguishable types of points and assigned 
them unique colors (this change can be done also in plot() function in {graphics} package). 
All of these changes made the graph much easier to read and interpret the data.  

 

 
Figure 2.  This scatter plot shows the same (as in Figure 1) 16 genotypes of soybeans (Glycine 
max) in Lawes location and 1970. The x-axis represents protein content (%) while the y-axis 
represents yield (t ha-1). Different types of symbols and colors represent genotypes from G13 
to G28. The graph was created using the lattice package in R with default settings putting the 
legend outside of the plotting region. We also changed the type and color of the points, and 
now it is much easier to read data. 
 

Box 2: Scatter plot with legend created in {lattice} package 

library(lattice) 

windows(w = 5.5, h = 4.5)  #Windows system only 

xyplot(yield~protein, data = data, 

 groups = gen, 

 xlab = list("Protein %", cex = .9), 

 ylab = list(expression(paste("Yield seed tons ", ha^-1))), 

 xlim = c(35.5, 44.5), 

 # instead of the default colors and points we choose our own 

 par.settings = simpleTheme(col = rainbow(16),  

 pch = c(0:6, 15:19, 22:25)),  

 auto.key = list(space = "right", columns = 1)) 
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Example 2: Coding a quantitative variable in the size of the point.  
The default settings are not always poorly set, but our use of them can be incorrect. As 

an example, we will use a bubble plot for 3D data (Zaman et al. 2010, Comas et al. 2012, Validi 
et al. 2015 are examples). In this graph, two variables are placed on the axes while the third 
variable’s values are coded by size (diameter or area; below we will discuss which is better) 
of a circle that represents the point of observation in a plane. In R environment, the bubble 
plot can be made in several ways using functions from various packages, for example 
functions gplot and size from {ggplot2}, functions plot and cex from {graphics}, functions 
plot, symbols and circles from {graphics}, or cex and subscripts from {lattice}. (Notice 
that from the mentioned packages only {ggplot2} automatically adds legend with size of 
circles.) However, before we start, we need to know what is the cex parameter. Its definition 
from plot.default says: "A numerical vector giving the amount by which plotting characters 
and symbols should be scaled relative to the default [...] NULL and NA are equivalent 
to 1.0". It means that with cex we increase some value which is scaled relatively to the rest 
elements of the graph. But what is this parameter exactly? What does it mean that we change 
the size of the symbols on the plot? Depending on the type of a symbol given by the pch 
argument (e.g. circle, square or #), the cex parameter will change the size of that symbol in 
all dimensions of the chosen symbol (whichever it is: diameter, area, length of side etc.), so 
they will be multipled by the cex value. In Figure 3 we present an example which shows the 
difference between two sizes of the points. It is obvious that the points in the upper row are 
two times larger than in the lower one (no matter what kind of symbol we use, the parameter 
describing the size of the symbol will be multiplied). Note that for this reason it is not proper 
to compare different types of points, e.g., circle and #, because even for the same value of cex 
the hashtag seems to be much larger (since different default features are increased for the 
hashtag and the circle).  

 
Figure 3. Four types of symbols (circle, square, hash and triangle) and two different sets of 
cex parameter (cex = 4 and cex = 8). The symbols in the upper row are two times greater than 
those in the lower row, depending  on the parameter describing the size of this symbol (e.g. 
for circle it will be diameter). 

For bubble plot, it is crucial whether we use diameter or area of the circle. Many 
programs, including R, use diameter of the circle (sometimes reported as radius). However, 
in the latest version of spreadsheet Microsoft® Excel 2013, we can create this graph with area 
of the circle as the default. According to many researchers, coding value of the third variable 
in the area of the symbols is not effective (e.g. Cleveland and McGill 1984a, 1985, Cleveland 
1993, pp. 142-145, Cleveland 1994, pp. 268-269, Rougier et al., 2014). It is not as accurate as in 
the case of their diameter, as can be seen in Figure 4. The graph presents a set of four values 
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(1.25, 2.5, 5 and 10) and two ways of their coding: with area or diameter of the circle. We can 
see that starting from the first value, each next is two times larger than the previous one. 
However, depending on the method of coding that information, it can be easier or harder to 
see it on the graph. Diameter of the circle is easier because it allows for more effective 
comparison of different values on the graph. Therefore, when using Excel 2013, we should 
change the default settings to the diameter of the circle (specified as the width of the bubble). 

 

Figure 4. Two ways of coding values in bubble plot: in area (top) and diameter (bottom) of 
the circle. When the values are coded in the diameter of the circle, it is much easier to see 
that each following circle (in line) is twice as large as the one it  follows. 

Now see Figure 5. The graph shows 7 genotypes of durum wheat (Triticum turgidum L. 
var. durum) in 1995, provided by Vargas et al. (1998) and released in the package agridat 
(Wright, 2014). The two variables, grain and biomass yield, are presented on the axes of the 
plane while the harvest index is coded by diameter of a circle using the cex parameter in 
xyplot {lattice} (Box 3). This graph shows the so-called multiplicative model used in 
agronomy and plant breeding (e.g. Sparnaaij and Bos 1993, Piepho 1995, Wnuk et al. 2013, 
Piepho et al. 2014) where grain yield is the result of multiplication of its components, 
biomass yield and harvest index. Harvest index is a ratio between grain yield and biomass, 
and its value can take range from 0 to 1 (sometimes it is reported in percentages). From  
Figure 5, it seems that harvest indices are similar for all genotypes, but in fact they are 
different (some up to 0.2). How come we do not see this on the graph then? This is because 
values of the harvest index are so small. Thus, the cex parameter takes values from minimum 
(HI = 0.22) to maximum (HI = 0.46).  

To better show differences between the genotypes, our first thought may be to increase 
the cex argument in the xyplot function. However, the graph should always show actual 
differences (that is, differences that have biological meaning) in the harvest index between 
the genotypes and not just some differences. Thus, the difference between 0.25 and 0.35 
value should be easy to see on the graph, but that between 0.30 and 0.32 not necessarily. For 
this purpose, we must draw a graph with rescaled size of the points. Doing this, we must 
rely either on the default scaling (e.g. using gplot) from {ggplot2} package or use some 
rescaling function (and e.g. use xyplot). The latter allows us to determine the range of scaling 
based on the knowledge about the multiplicative model . So, we changed the range of the 
harvest index using the TT.str function from the package {soiltexture} (Moeys 2011). With 
this, we can create a new, rescaled variable based on the value of harvest index (Box 4). To do 
so, we must specify a new minimum and maximum for this variable, taking range from 1 to 
5. Then, to each value of the harvest index we assign one value from this range. This new 
variable is used by the cex argument (Figure 6). With this new variable, the circles for 
harvest index 0.30 and 0.32 on the graph are similar, but for 0.25 and 0.35 the differences are 
easy to see.  
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Figure 5. This bubble plot shows seven genotypes of durum wheat (in three replications) in 
1995. The x-axis represents above-ground biomass yield (t ha-1) while the y-axis represents 
grain yield (t ha-1). The values of harvest index (HI) are presented using the cex parameter; it 
is because the values of the harvest index are small, we do not see any differences between 
the genotypes.The legend on the right presents genotypes of durum wheat, and the legend 
on the left presents the size of the circle (harvest index).  

 

 
Figure 6. This bubble plot shows the same data as those in Figure 5, but this time values of 
harvest index were rescaled using TT.str function from he {soiltexture} package (Moeys 
2011). It was done to better present actual differences in the harvest index than with the cex 
parameter. 
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Box 3: Bubble plot created in {lattice} package with cex parameter used to represent values 
of harvest index 

data(vargas.wheat1) 

wheat <- vargas.wheat1$genvals 

#we check the structure of the data  

str(wheat) 

#subset data in 1995 year  

wheat_data <- subset(wheat, year == "1995") 

#change kg
-1
 ha to t

-1 
ha 

wheat_data$yield <- wheat_data$yield/1000  

wheat_data$BIO <- wheat_data$BIO/1000 

#harvest index value from 0 to 1  

wheat_data$HID <- wheat_data$HID/100 

#create a legend with size of a bubble 

x <- c(.3, .3, .3) 

y <- c(.7, .6, .5) 

legend <- data.frame(x = x, y = y) 

p1a <- xyplot(y~x, data = legend, 

 xlim=c(0, 1), ylim = c(0, 1.1), 

 col = "black", pch = 1,  

 cex = c(0.45, 0.35, 0.25), 

 xlab = "", ylab="", panel = function(...) { 

 panel.text(.49, .8, "Harvest index", cex = 1) 

 panel.text(.65, .5, "0.25", cex = .95) 

 panel.text(.65, .6, "0.35", cex = .95) 

 panel.text(.65, .7, "0.45", cex = .95) 

 panel.xyplot(...) 

 }, 

 par.settings = list(axis.line = list(col = "transparent")), 

 scales = list(draw = FALSE)) 

#create a graph 

p1b <- xyplot(yield~BIO, 

 data = wheat_data, 

 groups = gen, 

 xlab = list(expression(paste("Biomass t ", ha^-1)),  

  cex = 1.1), 

 ylab = list(expression(paste("Grain yield t ", ha^-1)), 

 cex = 1.1), 

 xlim = c(11.8, 20.8), 

 ylim = c(2.2, 8.8), 

 scales = list(x = list(cex = 1.1), 

 y = list(at = seq(2, 8, 1),cex = 1.1)), 

 pch=0, 

 par.settings = simpleTheme(col = unique(rainbow(7))), 

 auto.key = list(space = "right", columns = 1, cex = 1), 

 kod = wheat_data$HID, 

 kod2=rep(rainbow(7), each=3), 

 panel = function(x, y, ..., kod, kod2, subscripts) { 

 cc <- kod[subscripts] 

 cc_2 <- kod2[subscripts] 

 panel.xyplot(x, y, lex = .7, cex = cc, col = cc_2)  

 }) 

#draw a bubble plot  

windows(w = 6.5, h = 4.5)  #Windows system only 

trellis.par.set(layout.widths = list(left.padding = -26)) 

print(p1a, panel.width = list(x = 1.5, units = "in"), split = c(1, 1, 2, 1), more = 

TRUE) 

print(p1b, panel.width = list(x = 3.9, units = "in"),split = c(2, 1, 2, 1), more = 

FALSE) 
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Box 4: Bubble plot created in {lattice} package with cex parameter used to represent 
rescaled values of harvest index by TT.str function from {soiltexture} package 

install.packages("soiltexture", repos = "http://R-Forge.R-project.org") 

library(soiltexture) 

#create a new variable based on the harvest index 

wheat_data$kod <- TT.str(wheat_data$HID, str.min = 1, str.max = 5) 

#create a legend with size of a bubble 

x <- c(.3, .3, .3) 

y <- c(.66, .51, .4) 

legend <- data.frame(x = x, y = y) 

p2a<-xyplot(y~x, data = legend, 

 xlim = c(0, 1),ylim = c(0, 1.1), 

 col = "black", pch = 1,  

 cex = c(4.855, 3.188, 1.521), 

 xlab = "", ylab = "", 

 panel = function(...) { 

 panel.text(.45, .8, "Harvest index", cex = .85) 

 panel.text(.65, .405, "0.25",cex = .8) 

 panel.text(.65, .51, "0.35", cex = .8) 

 panel.text(.65, .66, "0.45", cex = .8) 

 panel.xyplot(...) 

 }, 

 par.settings = list(axis.line = list(col = "transparent")), 

 scales = list(draw = FALSE)) 

#create a graph 

p2b <- xyplot(yield~BIO, 

 data = wheat_data, 

 groups = gen, 

 xlab = list(expression(paste("Biomass t ", ha^-1)), 

 cex = .9), 

 ylab = list(expression(paste("Grain yield t ", ha^-1)), 

 cex = .9), 

 xlim = c(11.8, 20.8), 

 ylim = c(2.2, 8.8), 

 scales = list(x = list(cex = .9),y = list(at = seq(2, 8, 1), 

 cex = .9)), 

 par.settings = simpleTheme(col = unique(rainbow(7))), 

 auto.key = list(space = "right", columns = 1, cex = .9), 

 kod = wheat_data$kod, 

 kod2 = rep(rainbow(7), each = 3), 

 panel = function(x, y, ..., kod, kod2, subscripts) { 

 cc <- kod[subscripts] 

 cc_2 <- kod2[subscripts] 

 panel.xyplot(x, y, lex = 1, cex = cc, col = cc_2)  

 }) 

# draw a bubble plot with scaled size of circles  

windows(w = 6.5, h = 4.5) #Windows system only 

trellis.par.set(layout.widths = list(left.padding = -26)) 

print(p2a, panel.width = list(x = 1.5, units = "in"),  

 split = c(1, 1, 2, 1), more = TRUE) 

print(p2b, panel.width = list(x = 4, units = "in"),  

 split = c(2, 1, 2, 1), more = FALSE) 
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We can also produce a bubble plot using gplot from {ggplot2} package. This function 
does not have the same drawbacks as xyplot because it automatically scales the size of the 
symbols and adds the legend, which is an advantage of this function and an example of good 
default settings (Figure 7; see also Box 5). However, as we mentioned before (see example 1), 
symbols on the plot should provide high visual distinguishability. The filled symbols can fail 
to do this because they are more likely to overlap than the unfilled symbols (e.g. Cleveland 
1994, pp. 50-52, 160-164, 234-239, Kozak 2010, Krzywinski and Wong 2013). This is especially 
inappropriate for bubble plot because smaller circles can be hidden by large ones (Figure 8). 
Fortunately, this is not the case in Figure 7, but mainly because of a smaller number of the 
points on the graph. In bubble plot (but also in other graphs),  the edges of the points should 
be visible in order to avoid hiding the observation and reducing their overlap (e.g. Harris 
1999, pp. 61, Jacoby 1998, pp. 33-37). However, when we use filled symbols (not only for 
bubble plot) we must ensure that such problems with overlapping the observation do not 
occur. 
 

 
Figure 7. This bubble plot shows the same data as those in Figures 5 and 6, but was 
constructed in the {ggplot2} package. The values of the harvest index were automatically 
rescaled in the qplot function. In default settings, symbols are filled, so they are more likely 
to overlap than unfilled symbols.   

 

Box 5: Bubble plot created in {ggplot2} package with size parameter to represent values of 
harvest index, a default scaling in {ggplot} 

library(ggplot2) 

#draw a bubble plot 

qplot(BIO, yield, data = wheat_data,  

 size = HID, colour = gen, 

 xlab = expression(paste("Biomass t ", ha^-1)), 

 ylab = expression(paste("Grain yield t ", ha^-1))) + coord_equal(ratio = 1) 
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Figure 8. Two ways of presenting data: unfilled symbols (bottom row) and filled symbols 
(upper row). Note that some of the observations are hidden when filled symbols are used. 

CONCLUSION 

Scientific literature is full of flawed graphs. Reasons for this are numerous, and one of 
them is inappropriate default settings in graphical software. Our study is not general since 
we analyzed only several functions in Excel and R, but there are many other programs that 
suffer from the very same weakness. Many other default settings can be considered as 
questionable choices. For example, Statistica and MATLAB use trick marks directed to the 
inside of the plotting region while they should be directed outside of the plot in order not to 
conflict with data points (e.g. Cleveland 1994, pp. 31-34, Jacoby and Schneider 2010). In an 
earlier version of Microsoft Excel (Excel 2003, which is still in use), graphs were created with 
dark grey background as default; also ggplot2 package (Wickham 2009) offers light grey 
background. However, in many other programs like Statistica, Excel versions starting from 
2007, and {graphics} or {lattice} packages in R, a background of a graph is white or 
transparent. It allows the user to focus on the data without any distractions. It seems to be 
the best choice (e.g. Few 2004, pp. 187-188, 210-201, Jacoby and Schneider 2010, Kozak 2010). 
However, according to some researchers the background of the graph with any color (but 
with a bright shade) can be useful in some, very specific situations. A subtle fill of color can 
be helpful when one uses bright colors of symbols or bars (e.g. Few 2004, pp. 210-211). 
According to Wickham (2008), light gray background creates a feeling that the graph is a 
consistent visual unit. He believes that a graph with gray background is better because it 
shares color (in a typographical sense) with text. Therefore, we do not have a situation where 
a graph with a bright white background suddenly jumping out from text. This is an open 
issue, and probably it is a matter of subjectivity. Undoubtedly, however, backgrounds in 
strong colors, gradients, shadings or with pictures are seldom a good idea. 

Default settings usually tempt us to assume that we do not need to worry about the 
graph because the software will do the whole job for us. Not everyone knows (or wants to 
know) the detailed rules of proper construction of scientific graphs. Probably many users 
consider it a waste of time; however, incorrect or poor graphs can mislead users and lead to 
false conclusions. Darrell Huff (1954) in his famous book ”How to lie with statistics” 
emphasized this. We should always remember about accuracy of all elements of the graph. 
Graphs in science play an important role of conveying important information. We should 
not, then, uncritically base on default settings of graphical packages because we showed in 
the paper that this can end with graphs that can fail to convey this message. 
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