
REGULAR ARTICLE 

Design and analysis of a trial to select for stress tolerance 

Hans-Peter Piepho 1*, Mian Faisal Nazir 2, M. Kausar Nawaz Shah 3 

1 Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Fruwirthstrasse 23, 70599 Stuttgart, 
Germany  
2 Wheat Program, CSI, National Agriculture Research Centre, Park road Islamabad, Pakistan 
3 Department of Plant Breeding & Genetics, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan 
*Corresponding author: Hans-Peter Piepho; E-mail: piepho@uni-hohenheim.de 

CITATION: Piepho H.-P., Nazir M.F., Shah M.K.N. (2016). Design and analysis of a trial to 
select for stress tolerance. Communications in Biometry and Crop Science 11, 1–9. 

Received: 8 July 2015, Accepted: 24 November 2015, Published online: 14 December 2015 
© CBCS 2016 

ABSTRACT 
To study stress tolerance of a set of breeding lines, it is necessary to evaluate the lines under 
stressed conditions and control conditions without stress. Thus, the evaluation involves two 
factors, i.e. stress treatment (with levels ‘control’ and ‘stressed’) and genotypes. There are 
many valid experimental designs for factorial experiments, which involve randomization of 
stress treatment-by-genotype combinations. Conducting trials laid out according to such 
standard designs may be difficult, however, due to potential neighbour effects between plots 
receiving different stress treatments. This frequently leads plant breeders to assess stress 
treatments in completely separated trials. For example, one trial may be conducted for the 
control treatment and one trial for the stress treatment. This approach limits the type of 
inferences that are available. In this paper it will be shown that inferences based on between-
trial information are not possible. Inference based on within-trial information is feasible, 
however, as will be illustrated using an example. The practical implication is that a genotype-
specific stress tolerance index cannot be estimated with this approach, but that a relative 
comparison of the genotypes’ stress tolerance is possible. 

Key Words: split-plot design; split-block design; between-trial information; within-trial information; 
contrast; estimability; confounding. 

 

 
 

INTRODUCTION 

Tolerance to drought stress is an important trait in wheat breeding programs. It is 
therefore of interest to study the genetic effects in breeding populations as related to drought 
tolerance. We here consider a trial that was conducted to evaluate all 21 genotypes generated 
from a 6×6 half diallel cross including self-crosses under stress and under control conditions 
without stress. The stress condition was induced by the use of potassium iodide, which 
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induces a dehydration stress. There were two treatment factors of interest: (i) stress level 
(control vs. dehydration stress) and (ii) genotypes (6 parents and 15 cross combinations). 
Two specific objectives of these two trials were: 
i) to study the mode of gene action, i.e., whether it is influenced by the stress-induced 
condition or not;  
ii) to compare both stress levels (control vs. dehydration stress) in order to study whether the 
selection under stress-induced conditions is effective or not. 

Wheat plants display a unique mobilization of stem reserves to grains under drought 
stress. This response can be mimicked by applying potassium iodide (KI) at anthesis (Blum 
1998), which induces dehydration stress. Clearly, the artificial dehydration stress is not 
exactly the same as drought stress, but it was used here as a convenient proxy to simulate 
such conditions. When applying this treatment in a field trial, great care is needed to make 
sure that non-stress plots are not affected as well. This can be achieved, e.g., by leaving 
sufficient guard space between stressed and non-stressed plots. These technical challenges 
need to be considered when designing the trial. The most commonly used approach in this 
situation is a split-plot design with stress level as the main plot factor and genotypes as the 
subplot factor. This design has a smaller number of direct adjacencies of stressed and non-
stressed plots than a design that randomizes stress level-by-genotype combinations, but such 
adjacencies are not entirely avoided even with split plots. An alternative approach, also often 
used in such a case, is to conduct two separate trials side by side, one with the stress 
treatment and one with the non-stress treatment. Such an approach, however, does not allow 
a direct comparison of stressed and non-stressed treatments because there is a confounding 
of the trial area effect with the stress treatment effect. 

Despite the limitations of the design regarding assessment of stress effects, some 
relevant information can be extracted from two separate trials. In this paper, we critically 
evaluate the options for and limitations of valid inferences to be made from such trials. It will 
be demonstrated that inferences based on within-trial information can be safely made from a 
joint analysis of both trials and that inferences based on between-trial information are not 
available due to limitations of the design. 

MATERIALS AND METHODS 

DESCRIPTION OF THE TWO TRIALS 
The experimental materials comprised six parental wheat varieties/lines, namely, 

Nacozari, LLR 22, LLR 20, CB 42, Parula and LLR 21 and their 15 direct crosses. The two 
trials were planted side by side in fall 2012 and harvested in spring 2013 in the field area of 
the Department of Plant Breeding and Genetics, PMAS Arid Agriculture University 
Rawalpindi, Pakistan. In each of the two trials, all the F1 hybrids along with their parents 
were planted in the field in a randomized complete block design with three replicates. Both 
trials were sown under rain-fed conditions. The first trial served as a control, whereas the 
second trial was treated with potassium iodide at the 50% anthesis stage to create chemical 
desiccation, thus simulating drought stress. Row length was 5 m, and distances between 
rows and plants were 30 cm and 15 cm, respectively. Two seeds per hole were sown with the 
help of a dibbler and later thinned to one seedling per hill after germination. Other cultural 
and agronomic practices were kept uniform, i.e., seed treatment, time of sowing, weeding, 
thinning, fertilization etc. for the whole trial. At maturity, ten guarded plants from each 
replicate were selected randomly for recording data for the traits. In this paper, we consider 
the response variable ‘number of grains per ear’ for illustration of analysis options. 

In the dehydration-stress trial, potassium iodide is used to induce desiccation by 
decreasing chlorophyll content, stomatal conductance and rates of photosynthesis and 
transpiration of flag leaves of the treated plants. Potassium iodide desiccates the plants’ 
green parts in 2-3 days if used with 0.5% active ingredients. A safe distance from untreated 
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plots is necessary to avoid neighbour effect on untreated plots. We are aware that a split-plot 
design (Federer and King 2007) with dehydration-stress level as the main-plot factor could 
have been used to minimize neighbour effects and guard space needed. Even with this 
design, however, great care would have been needed in applying the dehydration-stress 
treatment to the main plots, and safe distances need to be kept from the untreated main 
plots. Because of these challenges, it was decided to plant two separate trials. This approach 
means that we have two independent trials, and hence the stress and control treatments 
cannot be directly compared. This limits the inferences concerned with dehydration stress 
tolerance. 

BASIC MODELLING FOR TWO SEPARATE TRIALS 
The basic model for a randomized complete block trial can be written as 

ijijij egby +++= µ , (1) 

where ijy  is the observed response of the i-th genotype in the j-th block, µ  is the general 

intercept, jb  is the effect of the j-th block, ig  is the effect of the i-th genotype, and ije  is the 

plot error effect corresponding to ijy . There are two levels of stress, tested in two adjacent 

trials, which need to be jointly analysed. The joint model can be written by just adding a 
subscript to identify the stress level. An important point to be made here is that the two trials 
do not only differ in the stress level applied, but also in the area to which the trials were 
planted. These areas will have an environmental effect on the response that is independent of 
the stress level applied to them. To make this point explicit, we add two subscripts here, i.e., 
a subscript t for the trial area and a subscript s for the stress level: 

ijstisjtstijst egby +++= µ . (2) 

In our case, stress level s=1 is applied to trial area t=1 only and stress level s=2 is applied 
to trial area t=2 only, so there is complete confounding of area and treatment effects. Note 
that the block effects carry only the subscript t, indicating that this is a purely environmental 
effect that is not assumed to interact with the stress treatment. This is in agreement with the 
usual assumption of block-treatment additivity (or unit-treatment additivity; Hinkelmann 
and Kempthorne 1994, p.187). Conversely, the genotype effect only carries the stress level 
subscript s, for the same reason: it is a treatment effect and as such may interact with the 
other treatment factor “stress level”, but not with design (block) factors, which are indexed 
by trial area t and blocks j within trial areas t. The intercept carries both the subscript t for 
trial and the subscript s for treatment, which reflects the confounding of treatment and trial 
effects. For evaluating the merits of the design with two separate trials, it is useful to 
consider the expected value of the sample mean of the i-th genotype under the s-th stress 
condition. This may be defined as 

( )
iststiststi gbyE ++== •• µφ , (3) 

where tb•  is the arithmetic mean of the block effects in the t-th trial. It is important to re-

iterate that the trial-specific intercept stµ  comprises both the environmental effects of the t-th 

trial location and the treatment main effect of the s-th stress condition imposed. To make this 

more explicit, we partition the intercept 
stµ  as 

tsst βαµ += , (4) 

where 
sα  is a main effect for the s-th stress level and 

tβ  is a main effect (intercept) for the t-

th trial area. With two separate trials, the effects sα  and tβ
 
are completely confounded, and 

this is the essence of the limitation of this design. 

Any stress tolerance index for a genotype that would be computed from 
11iφ  and 

22iφ  

would suffer from this confounding (Kumar et al. 2012). For example, the simple difference 
is equal to 
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( ) ( ) ( )
121212121122 iiii ggbb −+−+−+−=− ••ββααφφ . (5) 

The genetic difference of interest is 

( )
1212 iii gg −+−= ααγ  . (6) 

Unfortunately, this is completely confounded with the purely environmental difference  

( ) ( )1212 •• −+−= bbββε . (7) 

An alternative view on the same problem is to consider the number of replications for 
the stress treatment. Generally, the number of replications per treatment is equal to the 
number of experimental units to which levels of the treatment factor were randomly 
allocated. In the case at hand, those units are represented by the two areas on which the two 
separate trials are conducted. Thus, the number of replications per treatment is one. The 
relevant error term for comparisons among the treatments is the variance among trial areas, 
but that variance cannot be estimated due to the lack of replication and the resulting 

confounding of treatment effects sα
 
and trial area effects tβ . 

A BRIEF DETOUR: ALTERNATIVE JOINT EXPERIMENTAL DESIGNS 

If we run a single trial, then we can directly estimate the genetic difference iγ  in (6). This 

is because in this case there is only one trial intercept and one set of block effects, so the 
environmental difference ε  in (7) vanishes. As alluded to above, for a joint trial, one would 
preferably use a split-plot design with stress level on the main plots and genotype on the 
subplots. The error term for treatment comparison would be the main-plot error mean 
square. A second solution to the problem would be a replication of the pairs of trial at 

multiple locations. In this case there would be multiple realizations of the trial main effect tβ
 

per treatment, meaning that a variance for trial effects could be estimated, thus providing a 
valid error term for treatment comparisons.

 

INTERACTION CONTRASTS FOR TWO SEPARATE TRIALS 
Let us recall and emphasize that an important assumption of the joint analysis by model 

(2) is that there is no interaction between trial and genotype. On a small area of land and 
when the two trials are planted next to each other, this is usually a reasonable assumption. 
Note that we would readily make that assumption if a single trial were planted on the same 
area of land, for example a split-plot design with treatments as main-plot factors as 
suggested in the preceding section. In fact, no valid statistical analysis would be forthcoming 
without that assumption (Hinkelmann and Kempthorne 1994). 

The assumption of block-treatment additivity does provide a way forward to obviate the 
confounding of stress treatment and trial effect even when two independent trials are 
conducted side-by-side. In each trial we may consider genotype differences. For example, 
assume we want to compare the genotypes i and h. The difference in a trial t is given by 

hsishstist gg −=−φφ , (8) 

which is free of environmental effects, so this difference is said to be estimable. Note that if 

we plug in the expression for 
istφ  from (3), the trial main effect as well as the block mean 

cancel, which shows that the contrast is estimable from within-trial information. In order to 
compute genotype-specific measures, it is convenient to look at the difference of a genotype 
to the mean of all genotypes for a given stress level s, which is also estimable from within-
trial information. This contrast can be defined as 

sisstist gg •• −=−φφ . (9) 

A relative measure of stress tolerance can now be defined by comparing these differences 
between the two stress levels s = 2 and s = 1 as follows: 

( )
1122 •• −−−= ggggST iii . (10) 
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This index iST  is estimable from two independent trials because it is an interaction contrast 

that corresponds to a difference of two differences, each of which is estimable within one of 
the trials. It is therefore also based entirely on within-trial information. 

It should also be stressed, however, that iST  is just a relative measure that assesses the 

stress tolerance of one genotype relative to the others. Thus, if we find 1=iST , we only 

know that the tolerance of genotype i is one unit above that of the average tolerance of all 

genotypes. What we cannot assess in absolute terms is the genetic difference iγ , which 

would tell us how the mean yield changes for the i-th genotype between stress and non-
stress condition. For assessing this contrast, we would need to run a single trial with both 
stress and non-stress treatments randomized together, e.g. as a split-plot trial as suggested 

earlier. In the current trial, iγ
 
in (6) is a between-trial contrast and as such is not estimable 

because of lack of replication and because of the confounding of treatment and trial area 
effects. 

Subsequently, we consider how the two questions posed in the introduction can be 
answered. It will be illustrated that answers are forthcoming by assessing contrasts that are 
entirely based on within-trial information. 

QUESTION 1: IS GENE ACTION INFLUENCED BY STRESS LEVEL? 

To answer this question, we partition the genotypic effect isg , which is nested within 

stress level s, into a main effect for genotype ( ig ) and an interaction between genotype and 

stress level ( )
is

gα , i.e., 

( )
isiis ggg α+= . (11) 

If gene action is influenced by stress level, there should be an interaction ( )
is

gα , but not 

otherwise. We can test hypotheses about the interactions ( )
is

gα  because these do not depend 

on the main effect sα  for stress level s, which itself is not estimable. 

QUESTION 2: IS INDIRECT SELECTION FOR PERFORMANCE UNDER TOLERANCE BETTER THAN DIRECT 

SELECTION? 
Suppose that we want to select for performance under stress treatment s = 2, and we 
consider either direct selection under the stress treatment s = 2 or indirect selection under the 
control treatment s = 1. Then the ratio of correlated response to selection under control 
treatment s = 1 (CR) and response to direct selection under stress treatment s = 2 (DR) is 
given by (Atlin and Frey 1990, Atlin et al. 2000)  

2

1

H

H

DR

CR
gρ= , (12) 

where 1H  and 2H  are the broad-sense heritabilities for treatments s = 1 and s = 2, 

respectively, and gρ  is the genetic correlation. The broad-sense heritability for the s-th stress 

level evaluated using an RCBD is defined as 

( )

( ) ( ) n
H

sesg

sg

s
/

22

2

σσ

σ

+
= , (13) 

where ( )
2

sgσ  is the s-th genetic variance, ( )
2

seσ  is the s-th error variance, and n  is the number 

of replicates per trial. The genetic variances ( )
2

sgσ  under the two stress levels and the 

correlation gρ  between the two stress levels are estimable because they do not depend on 

the main effect sα  for stress levels. 
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ACCOUNTING FOR THE DIALLEL STRUCTURE 
To account for the diallel structure, we can partition the genotype effect into general 

combining ability (GCA) and specific combining ability (SCA) effects (Piepho 2013). The 
linear model can be extended accordingly. Thus, there are main effects for GCA and SCA as 
well as interactions treatment-by-SCA and treatment-by-GCA. These can be modelled either 
as fixed (Question 1) or random (Question 2). 

RESULTS 

INDIVIDUAL TRIALS 
There are significant genotype effects (Table 1), and the error variances are somewhat 

different between the two treatments although the difference is not significant (Table 2). 
Nevertheless, taking a conservative approach, all analyses were performed assuming 
heterogeneity of variance between stress and non-stress conditions. For illustration, we 
report genotype means for the two trials for total dry matter at anthesis in Table 3. There are 
also significant GCA and SCA effects (Table 1), so there is scope for studying these genetic 
effects in relation to questions 1 and 2. 

Table 1. Analysis of variance (ANOVA) of individual trials for number of grains per ear 
(sequential sums of squares). 

Trial / Source of variation Degrees of freedom F-value P-value 

Control  
Replicates 2 1.45 0.2464 
Genotypes 20 39.29 <.0001 
GCA 5 22.12 <.0001 
SCA 15 45.01 <.0001 
Drought stress  
Replicates 2 0.61 0.5480 
Genotypes 20 22.75 <.0001 
GCA 5 10.80 <.0001 
SCA 15 26.73 <.0001 

 

Table 2. Error variances of individual trials for number of grains per ear and LR test for 
homogeneity of variance. 

Trial Variance estimates / 

LR test result 

Control 
 

11.56 

Drought stress   8.60 
LR-test for homogeneity of 
variance 

2χ    0.87 

  p       0.3511 

 

JOINT ANALYSIS OF BOTH TRIALS: ANSWERING QUESTION 1 TAKING GENOTYPES AS FIXED 

There is significant treatment × genotype interaction (Table 4), so gene action is 
influenced by stress level. There also is significant interaction for both the GCA and SCA 
effects (Table 4), further endorsing this conclusion. 

To further study the interaction, we defined a dummy variable x , which we set to 0=x  

for treatment 1 and to 1=x  for treatment 2. Thus, the effect “genotype*x” assesses the 
difference “treatment 2 minus treatment 1” of a genotype. If treatment 1 is the control, then 
this is the reduction due to stress. This effect itself is not estimable because of the 
confounding of treatment and trial main effects as explained above (see Material and 
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Methods section). We can estimate interaction contrasts, however, defined as pairwise 
differences among genotypes for the effects “genotype*x”. We can also compare this effect 

against the mean over genotypes, which corresponds to the stress index iST  (Table 5). 

Table 3. Genotype means per treatment for number of grains per ear. Means in a column 
followed by a common letter are not significantly different by the Tukey test controlling the 

family-wise type I error rate at α=5%. HSD = Tukey’s honestly significant difference. 

Genotype Control Drought stress 

1×1 47.7cd 35.0abcd 

1×2 42.7cdefg 27.0cdefg 

1×3 24.7ij 26.7defg 

1×4 51.0bcd 40.0a 

1×5 17.0j 18.3gh 

1×6 35.0fghi 18.0gh 

2×2 50.0bcd 40.7a 

2×3 36.3efgh 22.7fgh 

2×4 51.3bcd 39.7ab 

2×5 59.7ab 33.7abcde 

2×6 43.3cdefg 24.7fg 

3×3 52.7abc 30.3cdef 

3×4 48.7cd 36.0abc 

3×5 41.3defgh 30.7bcdef 

3×6 50.7bcd 14.7h 

4×4 33.0ghi 27.0cdefg 

4×5 17.7j 19.0gh 

4×6 32.0hi 25.3egf 

5×5 62.3a 39.7ab 

5×6 46.3cde 36.0abc 

6×6 44.3cdef 35.3abcd 

HSD(5%) 10.60   9.14 

 

Table 4. F-tests (sequential, Type I) of effects for replicate-treatment, genotype and genotype-
treatment interaction in joint analysis of number of grains per ear for both trials. 

Source Degrees of freedom F-value P-value 

Replicate × treatment 5 100.66 <.0001 

Genotype 20 51.78 <.0001 
GCA 5 22.96 <.0001 
SCA 15 61.38 <.0001 

Genotype × treatment 20 12.69 <.0001 

GCA × treatment 5 11.62 <.0001 

SCA × treatment 15 13.05 <.0001 

 
For example, from this result it emerges that 2×5, 3×3, 3×6, and 5×5 are particularly 

stress intolerant relative to the mean tolerance of all genotypes. But we have no absolute 
assessment that can quantify the overall effect of stress level or the effect of stress level for 
each individual genotype. Clearly, the contrast estimates in Table 5 represent a purely 
relative assessment, which may not be fully satisfactory for a full quantification of stress 
tolerance in absolute terms. 
  



Communicat ions  in  Biometry and Crop Sc ience ,  11 (1)  

 

8

Table 5. Estimates of stress-tolerance index iST , defined as difference in number of grains 

per ear between control and drought treatment for contrast “entry vs. all entries” (equation 
10) with standard error (SE). The p-values are adjusted for multiplicity using the simulation-
based Edwards-Berry method. 

Genotype Estimate P-value 

1x1 0.0667 1.0000 
1x2  -3.0833 0.9948 
1x3 15.4667 <.0001 
1x4  1.8167 1.0000 
1x5 14.7667 <.0001 
1x6  -4.4833 0.8503 
2x2  3.5667 0.9779 
2x3  -0.9833 1.0000 
2x4  1.1167 1.0000 
2x5  -13.9333 <.0001 
2x6   -6.2333 0.3404 
3x3  -10.0833 0.0047 
3x4 0.06667 1.0000 
3x5  2.1667 1.0000 
3x6  -24.4333 <.0001 
4x4  7.0667 0.1712 
4x5 14.7667 <.0001 
4x6  6.3667 0.3065 
5x5  -10.4333 0.0026 
5x6  2.5167 0.9995 
6x6  3.9167 0.9468 
   
SE 2.6566  

 
Table 6: Variance parameter estimates, heritabilities and ratio of correlated response (CR) 
over direct response (DR) to selection for number of grains per ear. 
 

Parameter / quantity Estimate 

( )
2

controlgσ  147.55 

( )
2

stressdroughtgσ  62.38 

( ) ( )stressdroughtgcontrolg ,ρ  0.6846 

( )
2

controleσ  11.56 

( )
2

stressdroughteσ  8.60 

controlH  0.9745 

stressdroughtH  0.9560 

DRCR /  0.6912 
2

GCAσ  334.24 

2

SCAσ  53.37 

2

)(controltreatmentGCA×σ  381.91 

2

)(controltreatmentSCA×σ  54.90 

2

)( stressdroughttreatmentGCA×σ  141.15 

2

)( stressdroughttreatmentSCA×σ  6.04 
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JOINT ANALYSIS OF BOTH TRIALS: ANSWERING QUESTION 2 TAKING GENOTYPES AS RANDOM 
Table 6 shows the estimates of variance parameters and derived quantities. The target 

treatment here is the stress treatment 2, so we consider direct selection under treatment 2 
compared to indirect selection under treatment 1. The result shows that direct selection 
under treatment 2 is clearly preferable (Table 6) because the genetic correlation with 
treatment 1 is too low to exploit the slightly higher heritability under treatment 1. The GCA-
related variances are larger than the SCA-related variances, indicating that selection for GCA 
is worthwhile. 

CONCLUSION 

We have shown that the original research questions 1 and 2 could be answered with the 
two separate trials. This is for two reasons: because all relevant contrasts and effects can be 
estimated from within-trial information, and because each trial has a valid randomization 
layout and full replication. By contrast, a stress-tolerance index is not estimable because this 
would require dwelling on between-trial information. This information does not yield 
information about the treatment effects due to a lack of replication for treatments and an 
associated confounding of trial area effects and treatment effects. If such an index needs to be 
estimated, an alternative design would be needed that provides true replication for 
treatments. One option is a split-plot design that randomly allocates treatment levels to main 
plots. A variation to this would be a strip-plot or split-block design, in which one factor 
would be allocated to rows and the other to columns within complete replicates (Federer and 
King 2007). Alternatively, a replication of the pairs of trials at multiple locations could be 
considered. Whenever feasible, we would recommend preferably using one of these 
alternative designs. 
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