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ABSTRACT 
Genotype × Environment Interaction (GEI) plays an important role in identifying genotypes for high and 
stable yield for broad and specific adaptations. It continues to be a challenging issue among plant 
breeders and agronomists when conducting crop performance trials across diverse and unpredictable 
environments. Normally, the analysis of GEI is carried out under the frequentist paradigm, even though 
ongoing crop improvement programs gather information on genotypic and experimental error 
parameters that could be incorporated using a Bayesian approach. The objective of this paper was to 
estimate, for sorghum (Sorghum bicolor) in Sudanese environments, genotypic and GEI variances, 
heritability, genetic advance attributable to selection, and genotype means using Bayesian and frequentist 
approaches. Eighteen genotypes of sorghum were evaluated in randomized complete block designs with 
four replicates in six environments, during 2009/10 - 2011/12, at South-Gedarif and North-Gedarif in 
Sudan. Priors were obtained from a previous set of multi-environment trials in sorghum during 2006/7 – 
2008/9 at Rahab, Sudan. Estimates of heritability and genetic advance under the Bayesian approach were 
higher than those under the frequentist approach. Precision of means of genotypes and heritability 
estimates were also higher under the Bayesian approach. The Bayesian approach provides a wider 
coverage for statistical inference and incorporates prior information with the likelihood of current data. 
For this approach, an illustrative step-by-step procedure is presented and recommended for use in 
statistical analysis of crop genotypes from multi-environment trials. 

Key Words: Bayesian analysis; crop variety trials; genotype-by-environment interaction; heritability; 
genetic gain. 
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INTRODUCTION 

Genotype × Environment Interaction (GEI) in crop traits arises due to a complex 
interplay among physiological and genetic factors, and biotic and abiotic environmental 
factors. Detection and exploitation of GEI is essential for identifying genotypes for high and 
stable yield. Vast literature is dedicated to this subject in relation to general methodologies 
and applications on specific crops. Among others, Lin et al. (1986), Gauch (1988), Cooper and 
Hammer (1996), DeLacy et al. (1996), Yan et al. (2007), Smith et al. (2005) and Sarker et al. 
(2010) deal with various aspects of the analysis of multi-environment trials (METs). Selection 
methods for genotypes for specific responses to environments, e.g. broad and specific 
adaptations, were examined by searching for underlying patterns of GEI. Kempton (1984) 
proposed to use bi-plots in explaining GEI in crop variety trials. Gauch (1988) modelled the 
GEI matrix as a low-rank approximation by singular value decomposition, which is known 
as Additive Main Effects and Multiplicative Interaction (AMMI) model. Later on, adding the 
genotype mean to the GEI to measure genotype performance in each environment, Yan et al. 
(2000) applied another type of multiplicative decomposition and displayed its results a bi-
plot (GGE-biplot).  A review of this technique is given in Yan (2011).  

 The majority of GEI investigations in the above studies have been carried out by using 
the frequentist approach, which bases on the likelihood of current data but does not make 
use of any prior information. On the other hand, the Bayesian approach uses such prior 
information available in the data collected in past/ongoing crop improvement programs 
and, therefore, possesses a much higher potential for statistical inference on GEI and other 
parameters of interest. 

To understand the difference more clearly, suppose we wish to estimate a parameter θ 

using an observed data vector 
1

( ,..., )
n

y y y ′=  where the likelihood of observing y  is a 

function of θ, i.e., ( | )f y θ . A series of available estimates of θ may provide prior information 

or belief in θ, which may be expressed as a probability distribution function, i.e., ( )g θ . 

Under the Bayesian approach and using Bayes’ Theorem, inference on θ is obtained as 
conditional probability distribution of θ given the data y , which is given by 

( | ) ( ) ( / ) f y g f yθ θ θ∝ . This expression, called the posterior density function of θ, is 

numerically obtainable by using the methods described in standard texts  
(Gelman et al. 2004).  In the context of multi-environment trials, the parameter θ would be a 
vector of various main effects, interactions and their variance components, which are to be 
inferred. In Bayesian formulation, all model parameters are treated as random variables, and 
a prior probability distribution is specified for each of them. 

Crop variety field trials are normally conducted by using block designs (Cochran and 
Cox 1957, Patterson and Williams 1976, Hinkelmann and Kempthorne 2005).  
Theobald et al. (2002) applied a Bayesian approach and predicted regional and local-area 
yields from crop variety trials. In another application of the Bayesian approach to the data 
from a small complete block design experiment, Forkman and Piepho (2012) found a smaller 
mean-square error and more accurate coverage of prediction intervals for means, compared 
to best linear unbiased predictors. Singh et al. (2015) presented a step-by-step procedure for 
Bayesian analysis of trials conducted in complete or incomplete block designs and provided 
the computational codes. In MET data analysis, heterogeneity in GEI variances and/or 
experimental error variances were addressed by Edwards and Jannink (2006), with the 
exponential of an additive model with random effects for genotypes and environments, 
where suitable priors for the variance components were assigned and fitted under a Bayesian 
framework. Crossa (2012) reviewed a number of frequentist models to assess GEI and used a 
Bayesian approach with a set of priors for variance parameters to model gene (in terms of 
markers) × environment interaction. In the context of exploring GEI pattern using an AMMI 
model, Crossa et al. (2011) applied a Bayesian method for the estimation of model 
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parameters and found its usefulness for unbalanced datasets with heterogeneous variances. 
Perez-Elizalde et al. (2012) successfully applied the Bayesian approach for modelling maize 
yield data using AMMI and considering Mises-Fisher distributed priors for the 
multiplicative part.  

Recently, Josse et al. (2014) proposed a Bayesian treatment of linear-bilinear models to 
deal with the problem of over-parameterization by ignoring it at the prior level, but applying 
an appropriate processing at the posterior level. Couto et al. (2014) estimated stability and 
adaptability parameters in popcorn using a Bayesian approach for fitting Eberhart and 
Russell’s (1966) model and implemented the method by using the ‘MCMCregress’ function 
available in the ‘MCMCpack’ package in the open source R software (R Core Team 2015). 
They found Bayesian techniques efficient for cultivar recommendation in more or less 
favorable environments, leading to high accuracy of the parameter estimates for cultivar 
evaluation.  Credible intervals obtained by de Oliveira et al. (2014) for data from maize trials 
allowed them to identify genotypes and environments that did not contribute to GEI; thank 
to this, the authors constructed homogeneous subgroups of genotypes and environments for 
specific adaptation. 

Modelling real data from multi-environment crop variety trials generally requires 
computing with large models. With availability of current level of computing power, the 
Bayesian approach is reasonably suited to handle complex statistical models without 
involving large-sample approximations like in the frequentist scenario. For general model 
fitting, a Bayesian approach can be implemented by using the Markov-Chain Monte Carlo 
(MCMC) procedure, which is highly flexible, works for an arbitrary number of random 
effects, and provides high accuracy in the estimates of parameters of interest. The necessary 
algorithms are available in the WinBUGS (Spiegelhalter et al. 2003) and R (R Core Team 
2015) software. If various plausible priors are available, selection criteria such as the 
Bayesian Deviance Information Criterion (DIC) can be used to assess the degree of 
compromise between data and priors. These criteria are discussed in standard texts such as 
Gelman et al. (2004) or Carlin and Louis (2009).  

In an ongoing crop improvement program, prior information on variance components is 
generally available. Using the Bayesian approach, this study aims to assess GEI from one 
multi-environment genotype experiment in sorghum (Sorghum bicolor), by incorporating 
prior information from a set of similar trials conducted in the past, in Sudanese 
environments. For both the Bayesian method and the traditional frequentist method, we will  
1) estimate genotypic, GEI and error variances, 2) predict genotype means and rank 
genotypes, and 3) estimate parameters such as heritability, i.e., the proportion of phenotypic 
variation explained by the genotypes, and genetic advance due to selection, i.e., the extent to 
which breeding progress takes place in advancing the population through selection for the 
quantitative characters. 

MATERIALS AND METHODS 

EXPERIMENTAL DATA 
Eighteen genotypes of sorghum were evaluated in a randomized complete block design 

(RCBD) with four replicates in six environments. These trials were conducted by the Cereal 
Research Program, Agricultural Research Corporation (ARC), Wad Medani, Sudan during 
the seasons 2009/10, 2010/11 and 2011/12 at each of the two contrasting locations North-
Gedarif and South-Gedarif, which have a substantial difference in long-term rainfall, among 
others. Grain yield was recorded in kg ha-1.  

There are two possible approaches to the MET analysis: 1) locations and years are 
combined and treated as environments; 2) environments are partitioned into locations, years 
and their interaction. In the present study, as commonly done in many MET studies, we will 
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follow the first approach. This is because the number of years and locations is too small to 
analyze the structure of these environment components. 

FREQUENTIST APPROACH  
From the frequentist point of view, we modelled plot grain yield data collected from 

multiple environments in terms of environment effects, block effects within environments, 
genotype effects, and genotype-by-environment interactions: 

���� � � � �� � 	�� � 	 �� � ���� � ����                                                                                       (1) 

where Y��� is yield from the plot under the i�� genotype in the k�� block of the j�� 

environment,  μ is the general mean, E� is the effect of the j�� environment,  R�� is the effect of 

the ���  block in environment j,	 G� is the effect of the i�� genotype, GE�� is the interaction 

between the  i�� genotype and the j�� environment, and	e���	is the random error from this 

plot. The environments were the combination of years and locations, and we assumed the 
effects of the six environments were fixed. Since we also aimed to estimate heritability and 
genetic gain due to selection, we also assumed the genotypic effects and G × E interaction as 
random (Kempthorne 1983). Overall, apart from μ, the following random-effects 
assumptions were made: 

	��~	��0, !"
#$ 

��~	��0, !%
#$ 

 ����~	��0, !%&
# $ 

����~	��0, !'
#$, 

where the symbol ~ means ‘is distributed as’ and N(0, σ2) is the normal distribution with 
mean 0 and variance σ2 , where σ2 stands for each of the above variance components. The 

indices 1, ,n ( 18)
G

i = =K  refer to genotypes, 1, ,n ( 6)
P

j = =K  refer to the environments, and 

1, ,n ( 4)Bk = =K  refer to the replications. In METs, the variance components due to 

replications, genotypes, and errors may vary with the environment (Smith et al. 2005). Based 
on the analysis of environment-wise data under the present study and using the Bartlett’s 
test for homogeneity of variances from the three environments, we found an acceptable level 
of homogeneity among the variances due to replications (P = 0.708) and genotypes (P = 
0.035). However, the error variances differed significantly (P < 0.001) but were ignored to 
enable the use of their pooled variance in the standard expressions for the heritability and 
genetic gain due to selection (Kempthorne 1983). For a more general situation with variance-
covariance structures, however, one may pursue the estimation of heritability on the lines of 
Cullis et al. (2006) and Piepho and Möhring (2007). To fit the mixed model in equation (1), 
we used the restricted maximum likelihood (REML) method based on the REML directive in 
Genstat software (Payne 2013).  

BAYESIAN APPROACH 
From a Bayesian perspective, model in equation (1) can be re-written as  

����|�� , 	��, �� , ���� , !'
#~	��� � �� � 	�� � 	 �� � ���� , !'

#$ 

The variance components of the effects and interactions in equation (1) will be assumed to be 
random variables having distributions, called a priori distributions, with known parameters. 
Such a priori distributions have been studied and recommended for variance components or 
for the corresponding standard deviation components or scale parameters by Gelman (2006), 
who also commented on the limitations of gamma/inverse-gamma as the prior distribution 
for variance components. Based on the estimates of standard deviation components (SDC) 
obtained from a series of trials conducted in past, Singh et al. (2015) found the truncated 
normal distributions as satisfactory priors for those SDCs. The various a priori distributions 

of the scale parameters,  for the effects and errors of the model (1) were, 

therefore, taken from the families of positively truncated normal distributions.  

, , and
R G GE e

σ σ σ σ
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Priors for the SDCs: In this study, priors were obtained by using data on sorghum yield 
(kg ha-1) from three similar experiments conducted to evaluate 18 genotypes in RCBDs with 
four replications during 2006/07- 2008/09 at Rahab station in Sudan. The various 
components of variance were estimated using restricted maximum likelihood (REML) 
estimation, by taking data from 1) the first two –years and 2) all three years. Of the many 
choices for building prior information, the first two years data were the earliest to enable an 
estimation of GEI. The estimates of variance components along with their standard errors 
were obtained by using REML and associated directives in the Genstat software. The 
variance parameters of the SDCs were estimated by using the approximation for variance of 
square-root of a random variable, say X, as Var(X)/(4X). For each of the two priors sets, 

Table 1 gives the estimates of the variance components ( , say) and values of the precision 
parameter (τ ) of the SDC (σ ), defined as the inverse of its variance.  The a priori 
distribution for the SDC (σ ), may be denoted as the positively-truncated-normal: 

1
(0, )N τ

− + . In the notation used in the WinBUGS software, this distribution will be written 

as “dnorm(0, τ )I(0,)”. The precision (τ ) of the SDCs based on the three-year data was much 
higher than that from the first-two-year data. The two priors thus taken were:  

1) P1: Priors set with 1 1
~ (0, 0.000993 )

R
Nσ τ

− − +
=  , 1 1

~ (0, 0.000199 )
G

Nσ τ
− − +

= , 
1 1

~ (0, 0.000731 )
GE

Nσ τ
− − +

=  and 1 1
~ (0, 0.000473 )

e
Nσ τ

− − +
=  (using data from 

2006/7-2007/8 and the values of the variances are from Table 1), and 

2) P2: Priors set with 1 1
~ (0, 0.00184 )

R
Nσ τ

− − +
=  , 1 1

~ (0, 0.000687 )
G

Nσ τ
− − +

= , 
1 1

~ (0, 0.00142 )
GE

Nσ τ
− − +

=  and 1 1
~ (0, 0.00760 )

e
Nσ τ

− − +
=  (using data from all the 

years 2006/7-2008/9) 
We selected a better of the two priors set with the deviance information criterion (DIC) 
criterion. In each of the above sets of priors, the prior for each parameter was assumed 
independent of the other priors. 
 
Table 1. Estimates of variance components and precision of the standard deviation 
components from data on sorghum genotype yields from trials in the three environments 
during 2006/07 - 2008/09 at Rahab, Sudan. 

 Based on years 
2006/07-2007/08 

Based on years  
2006/07-2008/09 

Random 
terms 

VCa 
VC 

estimate 
SEb (VC 

estimate) 
Precision (τ )c of 

the SDC 
VCa 

estimate 
SEb(VC 

estimate) 

Precision 
(τ )c of 

the SDC 

Replications 
within 
seasons 

σ*
#  959 1965 0.00099 1332 1702 0.00184 

Genotypes σ+
#  2760 7446 0.00020 9288 7354 0.00069 

Season × 
Genotype 

σ+,
#  17045 9659 0.00073 22207 7912 0.00142 

Error σ-
# 43085 6033 0.00473 40274 4605 0.00760 

a VC: Variance component estimate.  
b SE: Standard error estimate. SDC: standard deviation component.  
c Precision (τ ) of the SDC =1/( (SE (VC estimate))2/(4 × VC estimate)) 

 
A step-wise approach will have the following main steps:  

1) the dataset may be read using R-codes saved in a file;  
2) create another text file with extension “bug” to contain codes specifying statements to 
model data, description of priors, and parameters of interest;  

2
σ
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3) the file with R-codes may contain codes to specify data variables, initial values of 
random variables to be generated (one statement per chain, the list of parameters whose 
distributional summaries are to be printed, and a statement which calls the Bayesian analysis 
function (“bugs”) with links to data, initial values, parameters, numbers of iterations, chains 
and simulations); 4) run those codes and fix any errors as they come.  

The example files contents of the WinBUGS and R codes are given in Appendices A1-2. 
The number of iterations was set at one million, the number of chains was set at three, and 
the last 10,000 simulated values of the parameters were taken for evaluating the posterior 
distributions. These settings resulted into very small Monte Carlo error values of the 
estimated parameters, reflecting high accuracy of the estimates. 

HERITABILITY AND GENETIC ADVANCE DUE TO SELECTION 
Using the variance components from the METs, the broad-sense heritability on mean-

basis (h2) and genetic advance or gain due to selection of top 100q% lines (GA(q)%) are given 
as: 

2 2 2 2 2
/ ( / / ( ))

G G GE P e P B
h n n nσ σ σ σ= + + , and  

2 2 2 2 1/2
( )% 100 ( / ) / ( / / ( ))G G GE P e P BGA q C Y n n nσ σ σ σ= + +  

where C �
/

0√#2
	e345

6 /#	for		0 ; q ; 1	and	the truncation point z0	for the standard normal 

distribution is given by the equation D
/

√#2

E
45

e3F6 #⁄ dx � 1 I q and Y is the grand mean. For q 

= 0.20, C  = 1.4 (Kempthorne 1983; Singh et al. 2012). 

RESULTS 

SELECTION OF PRIORS 
Table 2 gives discrepancy statistics for the priors used in modelling the data. A smaller value 
of DIC reflects a better suitability of the chosen priors and model to the data (Gelman et al. 
2004). The DIC value for prior set P2 (2861.26) was lower than that for P1. Therefore, P2 was 
used to estimate the genetic parameters. 
 
Table 2. Discrepancy statistics for selection of the priors for sorghum grain yield data from 
the trials in six environments (2009/10 -2011/12 at North-Gedarif and South-Gedarif), 
Sudan. 

 Statisticsb 

Priorsa D D̂ D
p

 
DIC 

P1 5587.9 7966.48 -2378.58 3209.32 

P2 5588.42 8315.58 -2727.16 2861.26 

a P1: Priors set with 1 1
~ (0, 0.000993 )R Nσ τ

− − +
=  , 1 1

~ (0, 0.000199 )G Nσ τ
− − +

= , 
1 1

~ (0, 0.000731 )
GE

Nσ τ
− − +

=  and 1 1
~ (0, 0.000473 )

e
Nσ τ

− − +
=   

P2: Priors set with 1 1
~ (0, 0.00184 )

R
Nσ τ

− − +
=  , 1 1

~ (0, 0.000687 )
G

Nσ τ
− − +

= , 

1 1
~ (0, 0.00142 )GE Nσ τ

− − +
=  and 1 1

~ (0, 0.00760 )e Nσ τ
− − +

=  

b D = posterior mean of (- 2 × log-likelihood). D̂ = - 2 × log-likelihood at posterior means of 

parameters. D
p = effective number of parameters, DIC = Deviance information criterion. 

ESTIMATES OF COMPONENTS OF VARIATION, HERITABILITY AND GENETIC ADVANCE 
Table 3 shows the results. It was found that the posterior mean (i.e., the Bayesian 

estimates) was higher than the corresponding frequentist estimates for the genotypic 
variance and lower for the other two components (GEI interaction and the error variances). 
For all the estimates, the posterior standard deviations in the Bayesian approach were 
smaller than the corresponding standard errors in the frequentist approach. The ratios of 
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variance component estimates to the respective standard deviation or standard error 
estimates were higher for the Bayesian than for the frequentist approach. This showed that 
the Bayesian approach had higher power in detecting the variability due to genotypes and 
GEI. This increase in genotypic variability and reduction in GEI and error variances has led 
to a considerable increase (over three times) in heritability of the sorghum grain yield: 64.2 ± 
8.3% (the Bayesian approach) vs. 20.3 ± 29.9% (the frequentist approach).  The heritability 
estimate was smaller in the frequentist approach, with a very high standard error. The 
standard error is based on the large sample approximation of variance of the ratio of linear 
functions of variance components, i.e., the delta method (Harville and Fenech 1985), and may 
result in a negative lower limit. For the frequentist case of multi-environment trials in 
RCBDs, Singh et al. (1993) evaluated the probability of observing invalid estimates of 
heritability, which may provide guidance on selection of an appropriate experimental design 
for a given level of genotypic variability. The simulated distribution of heritability under the 
Bayesian approach provides a better protection against the invalid estimates. The estimated 
genetic advance by the Bayesian approach was over three times higher than that by the 
frequentist approach. The WinBUGS software provided standard deviation of the posterior 
mean of genetic advance. However, we could not find any approximation for the standard 
error of this index in its frequentist version. 
 
Table 3. Bayesian posterior means and frequentist estimates of variance components, 
heritability and genetic advance for sorghum grain yield (kg ha-1) from the trials in six 
environments (2009/10 -2011/12 at North-Gedarif and South-Gedarif), Sudan.  

Parametersa Bayesian approach (Priors set = P2) b Frequentist approach 

    95% Credible interval   

 
Posterior 

mean 
SDc 

 
Median 

 
Lower 

Upper Estimate SEd 

2

Gσ  4520 1654 4239 2146 8529 1169 2095 

2

GEσ  9621 1738 9477 6655 13330 21342 4249 

2

eσ  17820 1079 17770 15820 20020 24659 1994 

        
2

h  0.642 0.083 0.646 0.470 0.793 0.203 0.299 

GA(0.2)% 15.09 3.61 14.78 9.034 23.2 4.35 
 

        
CV% 26.9 0.81 26.9 25.4 28.5 31.7 

 
Mean (kg 

ha-1) 
496 6.366    496  

a 2

Gσ ,
2

GEσ  and
2

eσ  are variance components due to genotypes, genotype × environment interaction 

and error respectively. 
2

h = broad sense heritability on mean-basis. GA (.2)% = genetic advance at 20% 

selection. 

b The prior distributions were 1
~ (0, 0.00184)

R
Nσ τ

− +
=  , 1

~ (0, 0.000687)
G

Nσ τ
− +

= , 

1
~ (0, 0.00142)GE Nσ τ

− +
=  and 1

~ (0, 0.00760)
e

Nσ τ
− +

=  

c SD= posterior standard deviation. 
d SE= standard error. 
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PREDICTED VALUES AND RANKS OF THE GENOTYPES ACROSS ENVIRONMENTS 
Table 4 shows the posterior means of genotypes, 95% credible interval, and predicted means 
for the frequentist approach. Denoting the genotype numbers 1 to 18 as G1, G2 …G18, 
posterior means gave small differences of -1% (for G6) to 1.3% (for G18) over the frequentist 
estimate. The range of predicted means was almost the same for the Bayesian (380 – 600 kg 
ha-1) and the frequentist approach (384 – 598 kg ha-1). Genotypes G13 and G6 were found the 
highest- and lowest–yielding, respectively, under both approaches. The posterior means had 
much lower standard deviation (25.5 kg ha-1) than that in the REML best linear unbiased 
predictor (BLUP) standard error estimates (30 kg ha-1).  

Using the Bayesian simulation, it was possible to obtain ranks of the genotypes for 
predicted means for each simulation run. Using the 10,000 values, R codes were used to 
compute the posterior means of the ranks of the genotypes and their credible intervals (Table 
4). High-yielding lines will be those which are high-ranking genotypes most of the times. In 
this case one looks for high rank within say 95% credible interval. The rank of genotype G13 
varied from 1 to 4 in this interval, while the rank of the worst-yielding genotype G6 varied 
from 15 to 18.  The next two best lines under Bayesian approach were G15 and G10, whose 
ranks varied from 1 to 7 with 95% probability. 

 
Table 4. Predicted values of the genotype means and their ranks, under Bayesian and 
frequentist approaches, for sorghum grain yields (kg ha-1) from the trials in six environments 
(2009/10 -2011/12 at North-Gedarif and South-Gedarif), Sudan. 

 BAa FAb BAa FAb BAa 

 
 

95% credible 
interval 

    
95% credible 

interval for ranks 

Genotypes 
Posterior 

mean 
Lower Upper 

Pred- 
mean 

Rank Rank Mean Lower Upper 

G1 398 347 449 401 17 17 16.5 14 18 

G2 505 456 554 506 10 10 9.3 4 13 

G3 439 388 489 441 14 14 14.3 11 17 

G4 413 363 462 416 16 16 15.7 13 18 

G5 464 414 514 465 13 13 12.8 9 16 

G6 380 329 430 384 18 18 17.3 15 18 

G7 500 452 549 500 12 12 9.8 4 14 

G8 518 468 567 518 7 7 8.0 3 13 

G9 537 488 587 536 4 4 6.1 2 11 

G10 577 527 628 574 3 3 2.8 1 7 

G11 518 469 566 517 8 8 8.0 3 13 

G12 500 450 549 500 11 11 9.8 5 14 

G13 600 550 649 598 1 1 1.7 1 4 

G14 536 485 584 535 5 5 6.2 2 12 

G15 577 526 628 575 2 2 2.8 1 7 

G16 418 368 466 420 15 15 15.5 13 18 

G17 517 468 566 517 9 9 8.1 3 13 

G18 534 481 587 528 6 6 6.3 2 12 

Av SD/ SEc 25.5 
  

30 
     

Mean 496   496      
aBA= Bayesian approach. bFA= Frequentist approach. cAv SD/SE = Posterior standard deviation / 
average standard error. 
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DISCUSSION  

Interest in Bayesian methods in plant breeding research has been regularly growing. 
This is mainly because information collected from past/ongoing crop improvement 
programs, particularly on variance components involving genotypes, may be used to 
improve the inference on the parameters of interest for the current program. The present 
study compared the analyses of multi-environment trials in sorghum in Sudanese 
conditions, as obtained with or without prior information. We considered priors based on 
the standard deviation components from three previous trials in sorghum. Since a subset of 
data containing at minimum two environments can also be used to obtain the priors, priors 
based on the full dataset (three environments) were compared with those derived from a 
smaller dataset (two environments), by using the DIC (the smaller DIC, the better). Not 
surprisingly, the DIC favored the priors based on the larger dataset. Some priors obtainable 
from general considerations (Gelman 2006) may also be screened as candidate priors, 
whenever they could be seen as reasonable and have been used by others in similar studies.   

Evaluation of genetic advance is of primary interest in any crop improvement programs 
that lead to changes in the genotype base, through crossing and selection across time, 
inclusion of new or promising genotypes, and removal of the poorly performing ones. In this 
context, the assumption of random effects of genotypes becomes appropriate, and the 
interest lies in the prediction of the future performances of genotypes. It is not true that 
Bayesian estimates will always be relatively more precise than their frequentist versions. 
This is because various priors and various frequentist methods can be used, depending on 
the researcher’s choice. However, this study found that the Bayesian results showed higher 
genotypic variance and lower GEI and error variances. These resulted in higher heritability 
and genetic advance with higher precisions than those in the frequentist approach. Such over 
three times higher values of heritability and genetic advance may reflect the power of the 
suitably chosen priors as well as the Bayesian approach itself. Plant breeders desire high 
heritability and genetic gains for an efficient breeding program. These high values 
themselves should not be used to prefer the Bayesian approach over the frequentist 
approach; but this study should encourage plant breeders to exploit the historical data to add 
value and enhance the breeding progress.  

The Bayesian method can be very helpful in summarizing complex data analysis, like in 
METs. Due to its computational complexity, the Bayesian method needs to be implemented 
by using tools such as R2WinBUGS. In the end, simulated values for the parameters of 
interest describe their distributions well, and several summary statistics that either are less 
accurate or not available under traditional estimation methods may be accurately obtained. 
For example, standard errors of ratios of linear function of variance components or 
heritability estimated by using REML are approximate, and so are their confidence intervals. 
To the best of our knowledge, a frequentist approach does not enable one to analyze the 
distribution of ranks of the genotypes and approximation of standard errors of genetic 
advance. The broader statistical inference base of the Bayesian approach is facilitated by the 
available computational tools, for example, for computing the credible intervals for the rank 
of a genotype due to inbuilt simulations in R2WinBUGS software. The distributions of ranks 
of genotypes in the frequentist approach also can be obtained through an exclusive 
simulation. For example, in the case of MET data analysis aimed at comparing varieties for 
their stochastic dominance (Anderson 1974), Piepho and McCulloch (2004) presented a 
simulation approach based on using data transformation to evaluate the relative and 
absolute risks in wheat varieties. 

There are situations in METs that will be pursued by using priors derived from already 
conducted trials as well as by using uninformative priors, such as, for example, the 
evaluation of stability indices (Lin et al. 1986). The genotypic response to the environment 
may be partitioned into the response to the components of the environment, such as 
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locations and years, which may require more complex statistical models than those 
presented in this paper. The Bayesian approach to model location and year components will 
be pursued on other datasets to fully assess its usefulness.  

CONCLUSIONS 

In this study, we have compared frequentist and Bayesian approaches for detecting GEI 
in sorghum yield trials conducted in RCBDs in Sudan. Prior information was obtained based 
on a different set of multi-environment trials in sorghum. The Bayesian analysis was done 
using R2WinBUG.  The error variances, coefficient of variation, heritability, genetic advance, 
and predicted means of genotypes were estimated. The Bayesian posterior means (i.e., the 
estimates) for heritability and genetic advance were substantially higher than those of the 
frequentist approach, and the posterior standard deviations of those estimates were 
relatively lower. Incorporating the prior information from an ongoing crop improvement 
program has potential for adding value to the crop breeding program. The illustrative step-
by-step Bayesian procedure presented here is recommended for use in statistical analysis of 
multi-environment trials.   
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APPENDICES  
 

A.1: WinBUGS codes to model data from RCBD and estimation of means predicted, GEI  
 heritability and genetic gain 
#Bayesian analysis of GEI. This file GEI.bug comprises the following codes 

model{ 

 # data model 

  for (i in 1 :N){  y[i] ~ dnorm(mu[i], tau.e) 

                   mu[i]<- m  + b[blk[i],env[i]] + p[env[i]] + g[geno[i]]+ 

a[geno[i],env[i]] 

             } 

# m 

m ~ dnorm(0.0, 1.0E-6) 

# Block       

 for (j in 1: NP){for(k in 1: (NB-1)){ b[k,j]~ dnorm(0.0, tau.b)  } 

                                      b[NB,j]<-  -sum(b[1:(NB-1),j]) 

                 }      

# Genotyptes  

    for (i in 1: (NG-1)){ g[i] ~ dnorm(0.0, tau.g)   } 

                       g[NG]<-  -sum(g[1:(NG-1)])  

# Envirovments effects as fixed 

   for (j in 1: (NP-1)){  p[j] ~ dnorm(0.0, 1.0E-6)     } 

                     p[NP]<-  -sum(p[1:(NP-1)])  

#GEI 

for (i in 1: (NG-1)){  for (j in 1: (NP-1)){ a[i,j] ~ dnorm(0.0 , tau.a)  }  }                                         

                  for (j in 1: (NP-1)){ a[NG,j] <-  - sum(a[1:(NG-1),j]) } 

                  for (i in 1: (NG-1)){ a[i,NP] <-  - sum(a[i, 1:(NP-1)]) } 

                                    a[NG,NP] <- - sum(a[NG, 1:(NP-1)]) 

#priors  

                   sig.e ~ dnorm(0, tauE)  

                   sig.g ~ dnorm(0, tauG)I(0,) 

                   sig.b ~ dnorm(0, tauB)I(0,) 

                   sig.a ~ dnorm(0, tauGE)I(0,) 

                  tau.e <- 1/(sig.e*sig.e) 

                  tau.b <- 1/(sig.b*sig.b) 

                  tau.g <- 1/(sig.g*sig.g)  

                  tau.a <- 1/(sig.a*sig.a)             

# parameters of interest....more                       

                    sig2g <- (sig.g*sig.g) 

                    sig2e <- (sig.e*sig.e) 

                    sig2a <- (sig.a*sig.a) 

 # Prediction of parameters of interest-- means, heritability, SEs 

               for ( i in 1: NG) {PredG[i]<-  m + g[i]} 

               for ( j in 1: NP) {PredE[j]<-  m + p[j]} 

               for ( i in 1: NG) { 

               for ( j in 1: NP) { 

                 PredGE[i,j]<-  m + g[i]+p[j]+a[i,j]  } 

                                                        } 

 # Broad-sense heritability on  mean-basis, genetic advance and CV 

                          h2<- sig2g/(sig2g+sig2a/NP+sig2e/(NB*NP)) 

                     GA20<- 100*1.4*sig2g/mn/sqrt(sig2g+sig2a/NP+sig2e/NB/NP) 

                    CVpc <- 100*sqrt(sig2e)/mn                  

        } 

# end of BUGS codes 
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A.2: R- codes for reading Dataset-RCBD OF GEI and calling the ‘bugs’ function  
#load packs 

library(lattice) 

library(coda) 

library(R2WinBUGS) 

#data from comb......................................... 

ndata<- read.table("stadata.txt", header=TRUE) 

y<- ndata$GY ; blk<- ndata$Rep 

env<- ndata$Envi ; geno<- ndata$Geno 

mn<- mean(y) 

NB<- 4 ; NP<- 6 ; NG<- 18 

N<- NB*NG*NP ; NPG<- NP*NG ; NBP<- NB*NP 

#print(cbind(y,blk,env,geno)) 

print(cbind(mn, NB, NP, NG, NPG, NBP, N))  

# Assign tau's from the REML analysis of datasets for the priors 

# Envt fixed (three years data 2006/7- 8/9) 

 tauE<- c(0.00760); tauG<- c(0.000687) ; tauB<- c(0.00184) ; tauGE<- c(0.00142) 

# Envt fixed (only first two seasons) 

# tauE<- c(0.00473); tauG<- c(0.000199) ; tauB<- c(0.000993) ; tauGE<- c(0.000731) 

#----------------------------------------------------------------------------- 

data<- list("y","mn","blk","env","geno", "NB","NP","NG","N",  "tauE", "tauG", 

"tauB", "tauGE") 

data 

#Envt p[] fixed 

inits1<-  list(m=mn, b=c(rep(.1,NBP)), g=c(rep(.21, NG)), p=c(rep(.21, NP)), 

a=c(rep(.2, NPG)), sig.e=.5, sig.b=1, sig.g=0.01, sig.a=1.1) 

inits2<-  list(m=mn, b=c(rep(.1,NBP)), g=c(rep(.22, NG)), p=c(rep(.21, NP)), 

a=c(rep(.2, NPG)), sig.e=.5, sig.b=1, sig.g=0.01, sig.a=1.1) 

inits3<-  list(m=mn, b=c(rep(.1,NBP)), g=c(rep(.2, NG)), p=c(rep(.20, NP)), 

a=c(rep(.2, NPG)), sig.e=.5, sig.b=1, sig.g=0.01,  sig.a=1.1) 

inits <- list(inits1, inits2, inits3) 

inits 

parameters <- c("m", "PredG","PredE", "tau.e", "tau.b", "tau.g", "tau.a", 

"sig2g","sig2e","sig2a", "h2", "CVpc", "GA20") 

parameters 

rcbGE.sim <- bugs(data, inits, parameters, "GEI.bug", n.chains=3, n.iter=1000000, 

n.sims=10000,  debug=TRUE) 

# more codes for calculating ranks and their distributions are available on request 

from the corresponding author 

 

 

 

 


