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ABSTRACT 
To most biologists, the exact meaning of confidence intervals is very difficult to grasp, though such 
intervals are shown in many of our papers as measures of data variability. One of the reasons lies in the 
fact that the traditional way of teaching confidence intervals suggests much more than they actually 
deliver. Therefore, working with biologists, statistics teachers need a convincing way of introducing this 
topic and, to my experience, Monte Carlo simulation offers some opportunities. However, understanding 
the crude meaning of frequentist confidence intervals may be disappointing for biologists, who might be 
seduced by the intuitive appeal of Bayesian credible intervals. 
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INTRODUCTION 

A few months ago I made a survey among the students attending my course in 
‘Experimental Methods in Agriculture’. One of the questions was: 

QUESTION: „I sampled 5 maize plants from a field and found that their average 
height was � = 2. The confidence interval for the population mean was 1.8 - 2.2. 
What is the meaning of such a statement?”. 

The possible answers were (height is measured in meters and, for better clarity, 
measurement units will not be shown): 

1. There is 95% probability that the ‘true’ population mean (�) is between 1.8 - 2.2. 

2. If we sample repeatedly from our population of maize, the estimated confidence 
intervals will contain the true mean in 95% of cases. 

3. The true population mean is certainly between 1.8 - 2.2. 

4. The true population mean can take any value between 1.8 - 2.2. 

It is perhaps necessary to give some detail about the background for this survey: it came 
after the first half of the course, approximately one month after the lecture about point and 
interval estimation. At that stage of the course, I expected all the students to be familiar with 
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the fundamental fact that whenever we make an experiment, even if it is a very simple one, 
our main interest is not in describing a sample, but in estimating the characteristics of the 
whole population from which the sample was taken. The whole survey consisted of 20 
questions, and the students were asked to select the correct answers, without looking at 
textbooks or class notes, just using their memory and intuition. 

In the end, 75% of my 36 students chose answer 1 while none of them chose answer 2. 
This came out quite as a shock to me: in a frequentist setting, the correct answer is clearly 2. 
Indeed, it should be intuitively clear that there is a ‘true’ (fixed) average height � for my 
maize population, though I will never come to known it exactly, unless I measure all the 
plants in the population, clearly an impossible task. Therefore, I am forced into taking a 
sample from this population and measuring its average height (�). My intuition suggests that 
further samples will show different average heights, some closer while others farther from 
the true �, but this true � will not change. Recalling the frequentist definition of probability 
(from Wikipedia: „the limit of the relative frequency of an event in a large number of trials”), 
it would seem pretty clear that it makes no sense to attach any sort of probability to the true 
value of � as this is not going to change at all during my experiment! This is why answers 1, 
3 and 4 do not make sense in a frequentist setting. Furthermore, the confidence interval (1.8 
to 2.2) built from my sample may either contain � or not, but I have no hints to favor one of 
the two situations. And the limits of the interval (1.8 - 2.2) are actually meaningless: when I 
repeat the sampling, they will very likely change. 

The above reasoning seems pretty clear, so why did not students select answer 2? Why 
did they intuitively embrace the perspective of answer 1? It’s clear that I did not deliver the 
correct message during my lecture! In the following days I asked my colleagues biologists 
about their point of view. I was surprised to note that most of them see confidence intervals 
very much like it is described in answer 1. 

It has been stated that „confidence intervals seductively suggest more than it is actually 
delivered. What is delivered is an interval. What is suggested is that the probability that the estimated 
parameter is in the interval is 0.95” (Dennis 1996). We clearly see that answer 1 is strongly 
rooted in biology. 

THE USUAL TEACHING APPROACH 

Indeed, if we take a look at the milestones of biometry, such as Sokal and Rohlf (1981) or 
Snedecor and Cochran (1991), confidence intervals are always described starting from the 
sampling distribution of random variables. It is indeed pretty intuitive for all students that 
when we sample repeatedly from a normal population �(�, �), we obtain a new population 
of means (�) that is normally distributed, with mean equal to � and standard deviation equal 
to ��. Considering the values � and 	 (estimates of � and �) obtained at each sampling, the 
following probabilistic statement clearly holds: 


 �−�.���,��� ≤ ���
��

≤ �.���,���� = 0.95      (1) 

where (0.975,  – 1) is the 97.5th percentile of a t distribution with n – 1 degrees of freedom 
(where n is the number of sampled units). From there, with simple math it is derived that: 


#� − �.���,��� 	� ≤ � ≤ � + �.���,��� 	�& = 0.95     (2) 

which, unfortunately, may lead us to answer 1. Indeed, it is just a matter of wrong 
interpretation: such an inequality holds on the long run, meaning that 95% of the intervals 
built during the repeated sampling process will contain �. On the contrary, it does not hold 
for every single sampling effort, which is where the misinterpretation arises! Obviously, I do 
not intend to criticise the wonderful ‘classical’ books about biometry and their approach: a 
careful reading shows that all the above authors give a correct account of how the above 
equations should be interpreted. However, the risk of misinterpretation is very high. 
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A BETTER METHOD 

My course is strongly rooted in frequentist statistics. So it is fundamental that I deliver 
the correct interpretation of confidence intervals. To this aim, I should better avoid all the 
above equations and use Monte Carlo simulation instead. Let’s imagine that the true average 
height in the original population is � = 2.0 m, while the true standard deviation is 0.2 m. In R 
we can mimick the experiment by: 
 

set.seed(1234) 

sample <- rnorm(5, 2.0, 0.2) 
sample 

## [1] 1.758587 2.055486 2.216888 1.530860 2.085825 
mean(sample) 

## [1] 1.929529 

 
At this step, equation 2 turns out useful to calculate the two limits for the confidence interval: 
 
mean(sample) - sd(sample)/sqrt(5) * qt(0.975, 4) 

## [1] 1.583293 
mean(sample) + sd(sample)/sqrt(5) * qt(0.975, 4) 

## [1] 2.275766 

 

What insights do we gain from such an interval? 

1. A measure of precision: for a given sample size, the smaller the interval, the higher the 
sampling precision. 

2. The confidence that if we repeat the sampling, in 95% of the cases our confidence interval 
contains �. Indeed, Monte Carlo simulations allow us to demonstrate that this is true. In 
R, we just need to create an object to store the results (1 if our interval contains �, 0 if it 
does not) and perform 100,000 simulations: 

 
result <- rep(0, 100000) 

for (i in 1:100000){ 
sample <- rnorm(5, 2.0, 0.2) 

limInf<- mean(sample) - sd(sample)/sqrt(5) * qt(0.975, 4) 
limSup<- mean(sample) + sd(sample)/sqrt(5) * qt(0.975, 4) 

if (limInf<= 2.0 &limSup>= 2) result[i] = 1 

} 
sum(result)/100000 

## [1] 0.95052 

 
We need to note the following issues: 

1. It is false that there is 95% probability that the ‘true’ population mean is between 
1.583293 - 2.755766 m. In fact, the true population mean is always 2.0. 

2. It is false that if we repeatedly sample the population, 95% of the observed means will be 
between 1.583293 - 2.275766 m. Indeed, we see that the all the observed means in 100,000 
simulations are within that interval: 

result <- rep(0, 100000) 

for (i in 1:100000){ 

sample <- rnorm(5, 2.0, 0.2) 
if (mean(sample) <= 2.755766 & mean(sample) >= 1.583293) result[i] = 1 

} 

sum(result)/100000 
## [1] 1 

 



Onofr i–Conf idence in tervals :  am I unconsc ious ly  Bayes ian?  

 

61

3. It is false that there is 95% probability that the statement 1.583293 <�< 2.755766 is true. In 
normal experimental conditions we do not know anything about this, while in this 
Monte Carlo simulation, where � was known, we can say that our first confidence 
interval was able to ‘capture’ it. 

THE BAYESIAN PERSPECTIVE 

Indeed, answer 1 is wrong in a frequentist setting, but it is very close to the definition of 
a Bayesian credible interval. Like the frequentists, the Bayesians recognise that the 
experimental observations are driven by a ‘stochastic’ process, described by a certain 
likelihood function. In our case, observations are ‘drawn’ from a normal distribution with 
parameters � and �. However, the Bayesians attach to these parameters a ‘prior’ distribution, 
e.g. p(�), which summarises their personal belief before making the experiment. They may 
have a very vague belief, for instance that the true mean height of our maize population is 
somewhere between 1 and 3 m, without favouring any particular values within this range; 
they may also have a very strong belief, for instance that the true mean height is normally 
distributed around 2, with a standard deviation of 0.2. 

In all cases, the Bayesians use the observed sample to update their prior belief and 
determine a ‘posterior’ distribution, e.g. p(�|x), which summarises their new belief about �, 
after having seen the data x. And how is the prior belief updated? By using Bayes’ rule, i.e. a 
very old (published in 1764) and simple rule of conditional probability. As we see, in the 
Bayesian perspective � is not a fixed unknown quantity, but it has a distribution of 
probability ‘attached’ to itself. The existence of this  distribution makes such statements as 
„there is 95% probability that � is within the interval” or „I am 95% sure that the results of 
my experiment are correct” perfectly logic, while they are nonsensical in frequentist 
statistics. 

I will not give any further details about Bayesian methods here, which would be far 
beyond the aims of this paper; I will just suggest to the interested biologists one of the good 
books on the topic, such as McCarthy (2007). However, it may be useful to show how a 
Bayesian credible interval looks like. 

For a swift calculation, we will use R and the package rjags (Plummer 2014), that is, a 
good interface between R and JAGS, a wonderful free program for Bayesian analyses (JAGS 
stands for Just Another Gibbs Sampler). If you intend to reproduce the example below, you 
need to install them in your computer system. 

Let’s consider again the above-mentioned sample drawn from a normal distribution and 
submit it to Bayesian analysis with R + JAGS, to obtain a posterior distribution for �. First of 
all, we need to create a model specification (JAGS code), which is written to a string of text 
(modelSpec) in R and finally stored to an external text file („firstModel.txt”), by using the 
function writeLines(). Such a specification should contain: (i) a likelihood function for the 
observations, and (ii) a prior distribution for � and �: 

modelSpec<- „ 

model{ 
  #likelihood 

  for(i in 1:N){ 

x[i] ~ dnorm(mu, 1/sigma2) 
} 

  #priors 

  mu ~ dunif(1, 3) 

  sigma2 ~ dunif(0, 0.3) 
} 

#end of model specification 

„ 
writeLines(modelSpec, con=„firstModel.txt”) 
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The likelihood function corresponds to a normal distribution, with mean equal to � and 
precision equal to 1/�( (this parameterisation is specific to JAGS: the precision is the inverse 
of the variance �(). 

Our prior beliefs for the parameters are rather vague: (i) � ranges from 1 to 3, according 
to a uniform distribution; (ii) �(ranges from 0 to 0.3, according to a uniform distribution 
(uniform distribution means that all the values in the range are equally likely). 

Successively, we create a list to host the data needed for the analysis (dataset) and a list of 
initial values for the parameters to be estimated (init). Finally, we send model specification 
and other data to JAGS, by using the function jags.model(), provided by the package rjags. 
This function returns samples from the posterior distribution, and the 95% credible interval 
is any region in this posterior that contains 95% of the values (Kruschke 2011). 

 
 
library(rjags) 

set.seed(1234) 

sample <- rnorm(5, 2.0, 0.2) 
dataset <- list(x = sample, N = length(sample)) 

init<- list(mu = mean(sample), sigma2 = var(sample)) 
mcmc<- jags.model(„firstModel.txt”, data = dataset, inits = init, 

n.chains = 4, n.adapt = 100) 
## Compiling model graph 

##    Resolving undeclared variables 

##    Allocating nodes 
##    Graph Size: 13 

##  
## Initializing model 

update(mcmc, 1000) 
res <- jags.samples(mcmc, c(„mu”), 1000) 

res$mu 

## mcarray: 
## [1] 1.93085 

##  
## Marginalizing over: iteration(1000),chain(4) 

lims<- quantile(res$mu, c(0.025, 0.975)) 

lims 

##     2.5%    97.5%  

## 1.579337 2.283275 

 
It is reassuring to see that the Bayesian credible interval (last line in the above code) and 

the frequentist confidence interval are very similar in this case. Notwithstanding, the 
conceptual difference is huge, and answer 1 becomes correct when it is referred to the 
Bayesian credible interval while still being wrong with the frequentist confidence interval. 

We need to be careful, however. Indeed, if we change the vague prior into a more 
informative one, the results are going to change a lot. For example, if we use a normal prior 
for µ(with mean=2 and precision=1/0.07) and a narrower uniform prior distribution for σ 
[i.e. we change mu ~ dunif(1, 3) with mu ~ dnorm(2, 1/0.07) and sigma2 ~ dunif(0, 0.3) with 
sigma2 ~ dunif(0, 0.1) in the above code], we will obtain a much narrower credible interval. 

 
 
modelSpec2 <- „ 
model{ 

  #likelihood 
  for(i in 1:N){ 

x[i] ~ dnorm(mu, 1/sigma2) 
} 

  #priors 
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  mu ~ dnorm(2, 1/0.07) 
  sigma2 ~ dunif(0, 0.1) 

} 

#end of model specification 

„ 

writeLines(modelSpec2, con=„firstModel2.txt”) 
mcmc2 <- jags.model(„firstModel2.txt”, data = dataset, inits = init, 

n.chains = 4, n.adapt = 100) 
## Compiling model graph 

##    Resolving undeclared variables 

##    Allocating nodes 

##    Graph Size: 15 

##  
## Initializing model 

update(mcmc2, 1000) 
res2 <- jags.samples(mcmc2, c(„mu”), 1000) 

res2$mu 

## mcarray: 

## [1] 1.945657 

##  
## Marginalizing over: iteration(1000),chain(4) 

lims<- quantile(res2$mu, c(0.025, 0.975)) 
lims 

##     2.5%    97.5%  

## 1.738699 2.159008 

 

This is perhaps the most controversial aspect of Bayesian methods: the priors may be used to 
inject arbitrary elements into the process of data analyses (Lele and Dennis 2009). 

AM I SATISFIED WITH THIS? 

As a teacher I am happy with the above: I am sure that if I use equation 2 only for the 
calculation of confidence intervals and Monte Carlo simulation to demonstrate their 
meaning, I can deliver a more correct message during my lectures. But as a biologist, I have 
to admit that, like my students and my colleagues, I feel somewhat disappointed by the 
crude meaning of frequentist confidence intervals. In other words, although the correct 
answer to my initial question is 2, I find myself wishing it were 1: that would really be 
satisfactory! However, answer 1 would only be appropriate for a Bayesian credible interval 
and, although confidence and credible intervals may be very close when a flat prior is used, I 
do not think that mixing the two concepts is a good thing for students. 

A few weeks ago, I presented some of these feelings within the Bayesian Statistics 
community in Google+, by sharing a post with the same title as this paper. Afterwards, I 
received several comments where the intuitive appeal of credible intervals was used as an 
intrinsic advantage of the Bayesian approach over the frequentist approach. I do not intend 
to pursue the Bayesians/Frequentists war to any extent here, but I have to note that Bayesian 
analyses have recently become in fashion in the agricultural field (Che and Xu 2010, Cotes et 
al. 2006, Forkman and Piepho 2014, Josse et al. 2014, Mila and Carriquiry 2004). Kery (2010) 
lists six advantages of the Bayesian approach to statistics and wonders why not everyone is a 
Bayesian.  

Considering the ironic claim of IJ Good („People who do not know they are Bayesians 
are called non-Bayesians”; cited in Kery, 2010), I am asking myself: am I one of those people 
who are Bayesians, but do not know, yet? Perhaps, time has come for me to inject some 
Bayesianism in my courses. 
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