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ABSTRACT 
With advances in satellite, airborne and ground based remote sensing, reflectance data are 
increasingly being used in agriculture. This paper reviews various remote sensing methods 
designed to optimize profitability of agricultural crop production and protect the 
environment. The paper presents examples of the use of remote sensing data in crop yield 
forecasting, assessing nutritional requirements of plants and nutrient content in soil, 
determining plant water demand and weed control. 
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INTRODUCTION 

Remote sensing is the process of obtaining information about objects without coming 
into direct contact with the object. The carrier of information in remote sensing is 
electromagnetic radiation, which travels in vacuum at the speed of light in the form of waves 
of different lengths. The most useful wavelengths in remote sensing cover visible light (VIS), 
and extends through the near (NIR) and shortwave (SWIR) infrared, to thermal infrared 
(TIR) and microwave bands. Passive remote sensing sensors record incident radiation 
reflected or emitted from the objects while active sensors emit their own radiation, which 
interacts with the target to be investigated and returns to the measuring instrument. 

VEGETATION INDICES 

Biophysical features of plants can be characterized spectrally by vegetation indices 
defined as unitless radiometric measures. They are calculated as ratios or differences of two 
or more bands in the VIS, NIR and SWIR wavelengths. The usefulness of a vegetation index 
is determined by its high correlation with biophysical parameters of plants and low 
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sensitivity to factors hampering remote sensing data interpretation, e.g. soil background, 
relief, nonphotosynthesizing elements of plants, atmosphere, viewing and illumination 
geometry (Huete and Justice 1999) The most commonly used index is the Normalized 
Difference Vegetation Index (NDVI), proposed by Rouse et al. (1974) and calculated as a 
quotient of the difference and sum of the reflectance in NIR and red regions. Green parts of 
plants reflect intensively in the NIR region due to scattering in the leaf mesophyll and 
strongly absorb red and blue light via chlorophyll (Ayala-Silva and Beyl 2005).  

The NDVI index is used most frequently to determine the condition, developmental 
stages and biomass of cultivated plants and to forecasts their yields. The NDVI has become 
the most commonly used vegetation index (Wallace et al. 2004, Calvao and Palmeirim 2004) 
and many efforts have been made aiming to develop further indices that can reduce the 
impact of the soil background and atmosphere on the results of spectral measurements.  

An example of a vegetation index limiting the influence of soil on remotely sensed 
vegetation data is SAVI (Soil Adjusted Vegetation Index) proposed by Huete (1988). 
Another, the VARI index (Visible Atmospheric Resistant Index) (Gitelson et al. 2002), 
strongly reduces the influence of the atmosphere. Still more have been developed to consider 
differences in reflectance in the NIR and SWIR ranges indicating the occurrence of lack of 
water for plants: MSI (Moisture Stress Index) (Rock et al. 1986), LWCI (Leaf Water Content 
Index) (Hunt et al. 1987), WI (Water Index) (Panuelas et al. 1993), GVMI (Global Vegetation 
Moisture Index) (Ceccato et al. 2002), and SIWSI (MidIR, G) (Shortwave Infrared Water 
Stress Index) (Fensholt and Sandholt 2003). In turn, vegetation indices such as CWSI (Crop 
Water Stress Index) (Jackson et al. 1981), ST (Surface Temperature) (Jackson 1986), WDI 
(Water Deficit Index) (Moran et al. 1994), and SI (Stress Index) (Vidal et al. 1994) describe the 
relationship existing between water stress and thermal characteristics of plants. Examples of 
vegetation indices used in specific agricultural applications reported in the literature are 
presented in Table 1. 

REMOTE SENSING APPLICATION IN AGRICULTURE 

Remote sensing can be divided into three categories: ground-based, airborne and 
satellite. when evaluating a remote sensing platform, spatial and spectral resolution must 
also be taken into account. The spatial resolution defines the pixel size of satellite or airborne 
images covering the earth surface and relates to the dimensions of the smallest object that 
can be recognized on the ground. A sensor's spectral resolution indicates the width of 
spectral bands in which the sensor can collect reflected radiance.  

GROUND-BASED REMOTE SENSING 
According to Jackson (1986) handheld remote sensing instruments are very useful for 

small-scale operational field monitoring of biotic and abiotic stress agents. This technology 
has better temporal, spectral, and spatial resolutions in comparison to airborne and satellite 
remote sensing. A limiting factor of handheld remote sensing is one of efficiency and often 
time reduced to evaluating small areas when compared with aircraft and satellite mounted 
sensors, which can be used to be used to evaluate much larger areas at a time. Forecasting 
yield, nutritional requirements of plants, detection of pest damage, water demands and 
weed control are the most commonly undertaken problems in studies making use of 
opportunities of field spectrometers in agriculture. 
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Table 1. Vegetation indices compiled from the literature 

Index Formula Spectral bands 
or 

wavelenghts 
[nm] 

Level/Sens
or 

Application References 

Advanced 
Normalised 

Vegetation Index  
 

BLUENIR

BLUENIR
ANVI

+

−
=

 BLUE: 400 – 500 
NIR: 700 – 900 

Airborne  
(RMK TOP 15 
camera) 

Mapping 
Ridolfia 
segetum 

patches in 
sunflower crop 

Peña-
Barragan et 

al. (2006)  

Aphid Index 

21

21

REDRED

NIRNIR
AI

++++

−−−−
====

 RED1: 712  
RED2: 719 
NIR1: 761 
NIR2: 908 

Ground-
based (ASD 
FieldSpec3 
spectrometer) 

Identification 
of aphid 

infestation in 
mustard 

Kumar et 
al. (2010) 

Chlorophyll 
Index  

 

1−−−−====
GREEN

NIR
CI

 GREEN: 520 - 600 
NIR: 760 - 900  

Ground-
based 
(Exotech 
radiometr)  
Satellite 
(QuickBird) 

Plant nitrogen 
status estimates 

Bausch and 
Khosla 
(2010)  

Continuum 
Removed (CR) 
Spectral Index  

 
 

∫ −=

1284

1116

)1()1200(

λ
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CR

NIR

NIR
A

 

2

)
3

3
1)(21(

)1200(

CR

CR

NIR

NIR
NIRNIR

A

−−

=

 

NIR: 1116 – 1284  
NIR1: 1267 
NIR2: 1156 
NIR3: 1210 

Laboratory 
(ASD 
FieldSpec 
Spectrora-
diometer) 
Airborne 
(MIVIS) 

Estimation of 
the water 

content at leaf 
and landscape 

level 

Colombo 
et al. (2008)  

Damage 
Sensitive 

Spectral Index  
 

)()( GREENBLUENIRRED

GREENBLUENIRRED
DSSI

−+−

−−−
=

 

BLUE: 509  
GREEN: 537  
RED: 719  
NIR: 873 

Ground-
based (ASD 
FieldSpec 
Handheld 
Spectroradio
meter) 

Determine the 
sunn pest 

damage on 
wheat 

Genc et al. 
(2008)  

Effective Leaf 
Area Index  RED

NIR
ELAI 285.0441.0 ++++−−−−====

 RED: 610 – 680  
NIR: 780 – 890 

Ground-
based (CIMEL 
313 
radiometer) 

Winter oilseed 
rape yield 
prediction  

Wójtowicz 
et al. (2005)  

Green 
Normalized 
Difference 

Vegetation Index  
 

GREENNIR

GREENNIR
GNDVI

++++

−−−−
====

 GREEN: 557–582  
NIR: 720 – 920 
and/or  
GREEN: 520 – 
600  
NIR: 760 – 900 

Airborne 
(Multispectral  
Digital 
Camera) 
 
Satellite 
(IKONOS) 

Corn yield 
predictions 

Chang et 
al. (2003)  

Green Red 
Vegetation Index REDGREEN

REDGREEN
GRVI

++++

−−−−
====

 GREEN: 520 - 590 
RED: 620 - 680  
 

Ground-
based (GER 
1500 
Spectroradio-
meter) 

Estimation of 
damage caused 

by thrips 

Ranjitha et 
al. (2014) 

Healthy-Index            
 
 

25.0
1

1
RED

REDGREEN

REDGREEN
HI

+

−
=

 

GREEN: 534  
RED1: 698  
RED2: 704  

Airborne 
(MCA-6 and 
Micro-
Hyperspec 
Tetracam) 

Early detection 
of Verticillium 

wilt of olive 

Calderón 
et al. (2013)  

Leaf Rust 
Disease Severity 

Index 1 
Leaf Rust 

Disease Severity 
Index 2 

2.1
1

9.61_ −−−−====
BLUE

RED
LRDSI

 

38.0
2

2.42_ −−−−====
BLUE

RED
LRDSI

 

BLUE: 455 
RED: 605 
RED: 695 

Ground-
based (ASD 
FieldSpec 
spectrometer) 

Detection of 
Wheat Leaf 

Rust 

Ashourloo 
et al. (2014) 

Table 1 continued on next page  
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Table 1 continued 
 

Modified Soil-
adjusted 

Vegetation Index        
 

−−−−++++==== 12[5.02 NIRMSAVI  

])(8)12(
2

REDNIRNIR −−−−−−−−++++  

RED: 630 – 690  
NIR: 760 – 860  

Satellite  
(Terra 
ASTER) 

Prediction of 
corn canopy 

nitrogen 
content 

Bagheri et 
al. (2012)  

Normalized 
Difference 

Infrared Index  
 

SWIRNIR

SWIRNIR
NDII

++++

−−−−
====  

NIR1: 845 – 885  
NIR2: 1650–1700  

Airborne 
(MASTER) 

Detection of 
diurnal orchard 
canopy water 

content 
variation 

Cheng et 
al. (2013)  

Normalized 
Difference 

Water Index  
 

21

21

NIRNIR

NIRNIR
NDWI

+

−
=

 

NIR1: 841 - 876  
NIR2: 1230–1250  

Satellite 
(MODIS) 

Estimation of 
plant water 

content 

Zarco-
Tejada et 
al. (2003)  

Normalized 
Pigment 

Chlorophyll 
Ratio Index 

22

11

BLUERED

BLUERED
NPCI

++++

−−−−
====

 BLUE: 460 
RED: 660  

Ground-
based 
(Exotech and 
CropScan 
radio-meters) 

Estimation of 
leaf chlorophyll 

content 

Hatfield 
and 

Prueger 
(2010) 

Optimized Soil-
Adjusted 
Vegetation Index 

16.0++++++++

−−−−
====

REDNIR

REDNIR
OSAVI

 RED: 640 – 720  
NIR: 770 - 880 

Satellite 
(IKONOS) 

Nitrogen status 
estimation of 
winter wheat 

Jia et al. 
(2011) 

Ratio Vegetation 
Index RED

NIR
RVI =

 RED: 630 – 690  
NIR: 760 - 900 

Ground-
based (ASD 
FieldSpec 
Handheld 
Spectroradio
meter) 

Estimating 
nitrogen status 
of winter wheat 

Li et al. 
(2008a) 

Relative 
Reflectance 

Index 
rr

aa

VISNIR

VISNIR
RRI

/

/
====

 VIS: 400 – 700 
NIR: 740 - 820 

Ground-
based 
(quantum 
sensor LI-190s 
and LI-220S) 

Indication of 
drought of field 
grown oilseed 

rape  

Mogensen 
et al. (1996) 

Shortwave 
Infrared Water 

Stress Index 
1

1
)2,6(

NIRSWIR

NIRSWIR
SIWSI

+

−
=

 

2

2
)2,6(

NIRSWIR

NIRSWIR
SIWSI

++++

−−−−
====

 

NIR1: 841 - 876 
NIR2: 1230 - 1250 
SWIR: 1628 - 
1652 

Satellite 
(MODIS) 

Indication of 
canopy water 

content 

Fensholt 
and 

Sandholt 
(2003) 

Simple Ratio 

NIR

RED
SR ====  RED: 648  

NIR: 747 
Airborne 
(Hyperspectra
l camera) 

Detection of 
pest infestation 

in regional 
scale 

Glaser et 
al. (2009) 

Structure 
Insensitive 

Pigment Index 
REDNIR

BLUENIR
SIPI

−−−−

−−−−
====

 BLUE: 445  
RED: 680  
NIR: 800 

Ground-
based (ASD 
FieldSpec 
Handheld 
Spectroradio
meter) 

Determine the 
sunn pest 

damage on 
wheat 

Genc et al. 
(2008)  

Transformed 
Soil-Adjusted 

Vegetation 
Index 

 

)1(NIR

)NIR(
2

aXabREDa

baREDa
TSAVI

++++++++−−−−++++

−−−−−−−−
====

 RED: 610 – 720  
NIR: 760 – 950  

Airborne 
(Pushbroom 
camera) 
 
Satellite 
(SPOT HRV) 

Assimilation of 
remote sensing 
data into sugar 

beet yield 
predicttion 

model 

Launay 
and Guerif 

(2005)  

Triangular 
greenness index  

 

TGI = − 0.5[(RED − BLUE) (RED − 
GREEN) − (RED − GREEN) (RED −BLUE] 

BLUE: 450 – 520  
GREEN: 520 - 600 

RED: 630 - 690 

Ground-
based (ASD 
FieldSpec 
spectrome-
ter), 

Airborne 
(AVIRIS), 

Satellite 
(Landsat TM) 

Crop nitrogen 
requirements 

detection 

Hunt et al. 
(2013)  
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AIRBORNE REMOTE SENSING  
Up to date, airborne remote sensing is mainly realized with the use of piloted 

aircrafts, however, in recent years they are more often replaced by Unmanned Aerial 
Vehicles (UAVs), which are aircraft remotely piloted from a ground station. UAVs 
are typically low cost, light weight and low airspeed aircrafts that are well suited for 
remotely sensed data gathering. Currently, there are two broad platforms for UAVs, 
namely the ‘Fixed Wing’ and ‘Rotary Wing’ types. Fixed wing UAVs have the 
advantage of being able to fly at high speeds for long durations with simpler 
aerodynamic features. Some of them do not even require a runway or launcher for 
takeoff and landing. The rotary wing UAVs have the advantage of being able to take 
off and land vertically and hover over a target. However, because of mechanical 
complexity and shortened battery power, they have a short flight range 

UAVs have several advantages; they can be deployed quickly and repeatedly, 
they are flexible in terms of flying height and timing of missions and they can obtain 
very high resolution imagery. This imagery allows for observation of individual 
plants, patches, gaps and patterns over the landscapes that have not previously been 
possible (Franklin et al. 2006, Laliberte et al. 2006). According to Nebiker et al. (2008) 
UAVs with a typical spatial resolution of 1–20 cm could fill the resolution gap 
between piloted aircraft (resolution of 0.2–2 m) and ground-based platforms (< 1 cm). 
Providing a swath width of 50–500 m and a spatial resolution of 1- 20 cm, UAV 
platforms may be able to provide high resolution inputs necessary for site-specific 
crop management. UAVs with a very high resolution might be used also in 
agronomical research, management of specialty crops and studies of the within-field 
variability. Various ultra light imaging systems, weighing about 100 g,  have been 
developed to be used with UAVs in recent years. One of the lightest available 
multispectral camera is ADC Micro (Tetracam, Chatsworth, CA, USA), which 
weights 90 g and produces images in three channels: green (520-600 nm), red (630-
690 nm) and NIR (760-920 nm). 

SATELLITE IMAGERY  
Historically, satellite imagery has been used for crop type mapping, general crop 

condition assessment, and crop acreage estimation. Typically, these applications 
were used over large areas due to the limited spatial resolution of sensors. Finer 
resolutions of more recent satellite sensors, however, are now enabling within field 
assessment of problems such as drought stress, flooding and hail damage. 

A growing number of satellite remote sensing applications does not mean that 
this technology is free from limitations. Stafford (2000) stressed that satellite images 
can be affected by variable weather conditions. Lamb and Brown (2001) indicated 
that the low-resolution satellite images beneficial only for large-scale studies and 
may not be appropriate for the small-scale farms. Additionally, satellites providing 
higher-resolution images, e.g., QuickBird (2.4 m in VNIR) and ASTER (15 m), have 
long revisit times (1-3.5 and 16 days respectively), making them of limited utility for 
any application that might require frequent images. To reduce the revisit time, 
satellites are often deployed in constellations consisting of a few synchronized 
satellites, which are coordinated and overlap in ground coverage. 
 



Communicat ions  in  Biometry and Crop Sc ience ,  11 (1)  

 

36

FORECASTING OF YIELD 

Remote sensing has been used to forecast crop yields based primarily upon 
statistical–empirical relationships between yield and vegetation indices (Thenkabail 
et al. 2002, Casa and Jones 2005). Information on expected yield is very important for 
government agencies, commodity traders and producers in planning harvest, 
storage, transportation and marketing activities. The sooner this information is 
available, the lower the economic risk, translating into greater efficiency and 
increased return on investments.  

GROUND-BASED REMOTE SENSING 
Walsh et al. (2012), conducting research on winter wheat, using ground based 

spectra to forecast yield at the beginning of shooting stage. Many authors draw 
attention to the development phase of plants, as a critical component of yield 
forecasting (Basnyat and McConkey 2001, Wójtowicz et al. 2005, Piekarczyk 2011a). 
For instance, the most accurate yield forecasts of winter oilseed rape were achieved 
when the spectral measurements were performed in the phase of full budding of the 
crop (Wójtowicz et al. 2005). However, Piekarczyk et al. (2011a) showed that the 
strongest relationship between the spectral data and the winter rape yield was 
obtained at the beginning of the flowering stage, while wheat yields were most 
accurately predicted when the plants were in the shooting phase. Many studies have 
shown the usefulness of the NDVI index for yields forecasting (Basnyat and 
McConkey 2001, Piekarczyk et al. 2004, Wójtowicz et al. 2005, Walsh et al. 2012), but 
good correlations with predicted yield were also obtained for RVI (Ratio Vegetation 
Index) and ELAI (Estimated Leaf Area Index) indices (Wójtowicz et al. 2005). 
According to Piekarczyk et al. (2011b), before oilseed rape flowering the strongest 
correlation with yield was best when indices were calculated on the basis of 
reflectance in green and NIR wavelengths (550 and 775 nm, respectively). For yield 
forecasting, at the time of rape flowering, indices calculated on the basis of 
reflectance in NIR wavelengths and their logarithmic transformation were better 
than non-transformed spectral data (Piekarczyk 2011a). 

AIRBORNE REMOTE SENSING  
The usefulness of aerial photographs for forecasting maize yield, using portions 

of the VIS and NIR ranges several times during the growing season, has been studied 
as well (Chang et al. 2003). Airborne remote sensing data can substantially improve 
crop yield forecasting models. Launay and Guerif (2005) developed such a model 
that assimilates information obtained from images taken throughout the growing 
season.  Yield estimates were improved decreasing the root mean square error 
(RMSE) from 20% to about 10%. The robustness of the model depended on the 
number and timing of images which defines the number and the type of plant 
biophysical parameters that can be assessed. When yield estimations were compiled 
for areas for which the soil was poorly characterized the forecasts generated by the 
model were improved (the RMSE decreased from 21% to 15%) if late in the season 
remote sensing data were assimilated. The authors also found that the crop model 
was considerably less reliable in severe drought conditions.  

Yield predictions can be also derived on the basis of data recorded from an UAV 
platform. An unmanned helicopter was used by Swain and Zaman (2013) to obtain 
multispectral images to estimate rice (Oryza sativa L.) yield. With the use of a linear 
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regression model the authors proved a high relationship between spectral data and 
rice yield (R2=0.76) existed. 

SATELLITE REMOTE SENSING 
On a regional scale, crop yield estimation was carried out based on vegetation 

indices derived from AVHRR/NOAA satellite image data (Prasad et al. 2006). The 
model developed by the authors, describing relationships between satellite spectral 
data and crop yield in Iowa gave high R2 values for corn (0.78) and soybean (0.86). 
Dąbrowska-Zielińska et al. (2008) used the method to monitor the growth and yield 
of cereals on the basis of AVHRR/NOAA images in Polish conditions. The authors 
developed a model which estimated wheat yield (with an error RMSE=13%) on the 
basis of LAI and evapotranspiration indices calculated from AVHRR images. 

Galvão et al. (2009) studied the possibility of using satellite Hyperion 
hyperspectral images to estimate the yield of soybean obtaining a high correlation (r 
= 0.74) between vegetation indices and weight of harvested seed. The model 
developed by Li et al. (2008b) used an artificial neural network structure and enabled 
the prediction of yields of maize and soybean using MODIS sensor at a regional 
scale.  Model results produce an accuracy of 85%. Doraiswamy et al. (2004) also 
studied the possibility of using MODIS satellite data for forecasting yields using a 
calibrated form of the model developed by Li et al. (2008b).  Model calibration was 
accomplished using ground reflectance measurements. Simulated yield resultss were 
in good agreement with yields reported by USDA–National Agricultural Statistics 
Service (NASS) for corn and soybean with -3.12 and 6.62 percent difference, 
respectively. 

NUTRITIONAL REQUIREMENTS OF PLANTS 

GROUND-BASED REMOTE SENSING 
Ground level remote sensing methods are also used to determine the nutritional 

requirements of plants. Li et al. (2008a) using a handheld radiometer capable of 
measuring in the 325–1075 nm range, demonstrated a positive linear relationship 
between RVI and nitrogen uptake in winter wheat (R2=0.60 and RMSE=30.5%). In the 
study conducted by Stroppiana et al. (2009) a spectral range from 350 to 2500 nm was 
applied to estimate plant nitrogen concentration in paddy rice, by means of 
normalized difference indices derived via a the combination of all possible 
wavelengths within that range. The best correlation (R2=0.65) between plant nitrogen 
concentration and a normalized difference index was obtained in that study by using 
reflectance data in the visible part of the spectrum (503 and 480 nm). A good 
correlation between canopy reflectance and leaf nitrogen accumulation was also 
obtained by Zhu et al. (2008) in a study of rice (Oryza sativa L.) and wheat (Triticum 
aestivum L.). The best results were achieved when a ratio of reflectance in 810 nm to 
reflectance in 660 nm and a ratio of reflectance in 870 nm to reflectance in 660 nm 
were used in the calculations (R2=0.84 and 0.85, respectively). Another way 
developed to assess nitrogen status in a crop field is measuring the reflectance with 
active sensors like GreenSeeker (NTech Industries, Inc, Ukiach, CA, USA) and 
CropCircle (Holland Scientific Inc., Lincoln, Nebrasca, USA). Which, unlike passive 
sensors have their own light source. Active sensors usually generate only two or 
three wavelengths. The GreenSeeker has a red (660 nm) and a NIR (770 nm) whereas 
the CropCircle model ACS-470 has three measurements spectral channels and a set of 
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interchangeable filters (450 nm, 550 nm, 650 nm, 670 nm, 730 nm, 760 nm) which the 
user can select depending on the application.  More sophisticated than GreenSeeker 
and CropCircle sensors is the Yara N-sensor (Yara International ASA, Germany) 
capable of recording spectral information in five single wavebands. This sensor has 
been successfully used in nitrogen fertilization for wheat (Heege et al. 2008), barley 
(Soderstron et al. 2010), triticale (Zillmann et al. 2006), corn (Tremblay et al. 2009), 
sugarcane (Singh et al. 2006, Portz et al. 2012) and potato (Zebarth et al. 2003). 

AIRBORNE REMOTE SENSING 
An interesting example of using airborne hyperspectral images for plant 

nutritional stress detection is presented by Quemada et al. (2014) who compared 
reliability of ground level and airborne sensing methods to distinguish between 
nitrogen-deficient and nitrogen-sufficient maize plots. Readings at ground level were 
taken with SPAD (Minolta Camera Co., Osaka, Japan), Dualex and Multiplex 
(FORCE-A, Orsay, France) sensors, and airborne data were acquired by the 
hyperspectral sensors Micro-Hyperspec VNIR imager (Headwall Photonics, 
Fitchburg, MA, USA). This camera acquired radiance imagery in 260 bands in the 
400-885 nm region, 300 m over the experimental site. The study showed that 
vegetation indices based on airborne measurements were as reliable as 
measurements taken with ground-level equipment used for assessing crop nitrogen 
status. 

The use of airborne remote sensing in agriculture is also well documented by 
Goel et al. (2003) who validated the potential of that technology to detect nitrogen 
deficiency and weed infestation in corn. The objective of the study was to determine 
the relationship between the reflectance obtained in the 72 VIS and NIR wavebands 
(from 409 to 947 nm) and spectral differences resulting from the presence of weeds in 
the crop and various rates of fertilizer. Results indicate that the reflectance of corn is 
significantly influenced by the presence of weeds and nitrogen deficiencies in plants. 
Differences in spectral response due to nitrogen stress were most evident at 498 and 
671 nm at all growth stages, and the presence of weeds had no interactive effect. 
Differences in other spectral regions, whether related to nitrogen, weeds or the 
combination of the two, appeared to be dependent on the growth stage. Airborne 
images were taken three times during the season, the first image was acquired 30 
days after planting  a second 66 days after planting at the tasseling stage, and the last 
86 days after planting at the full-grown stage. Weeds were easiest to detect when 
corn was in the tasseling stage. Agüera et al. (2011) compared the efficiency of the 
nitrogen status assessments obtained from multispectral images taken from UAV 
and data recorded with a ground-based platform. NDVI calculated from both 
platforms proved to be good indicator of leaf nitrogen content, however a higher 
correlation coefficient (R=0.80) was found when using the UAV platform than for 
ground-based measurements (R=0.71). 

SATELLITE REMOTE SENSING 
There are also numerous examples of the use of the satellite images for the 

estimation of nitrogen status of crops. For example, Bausch and Khosla (2010) 
demonstrated that the QuickBird satellite multi-spectral data could be used for an 
accurate assessment of the within field spatial variability of nitrogen status of maize 
for in-season nitrogen management. Similar results were presented by Jia et al. (2011) 
who showed that single band reflectance in NIR (770 – 880 nm, red (640 – 720 nm) 
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and green (520 – 610 nm) wavelengths as well as vegetation indices of NDVI, 
GNDVI, RVI and OSAVI (Table 1) were well correlated with wheat nitrogen status 
parameters and that high resolution satellite images were useful tools in nitrogen 
fertilization management. 

DETECTION OF DISEASE AND PEST DAMAGE 

GROUND-BASED REMOTE SENSING 
Variability in the reflectance spectra of plants resulting from the occurrence and 

severity of pests and disease allows their identification using remote sensing data. 
Spectral characteristics of healthy and infested plants are significantly different. In 
the VIS range a healthy leaf reflects radiation in a small amount due to strong 
absorption by photosynthetic pigments, while the spectral reflectance in NIR bands 
is relatively high and is determined mostly by leaf internal structure and dry matter. 

Ground based spectral reflectance proved to be very helpful in detection of pest 
damage in crops. Genc et al. (2008), using a handheld radiometer reliably assessed 
the sunn pest (Eurygaster integriceps) damage to wheat, with the help of NDVI and 
structure insensitive pigment index (SIPI – Table 1). The study conducted by Ranjitha 
et al. (2014) also showed differences in reflectance between healthy and pest 
damaged plants. Out of three vegetation indices (RVI, NDVI, GRVI – Table 1) tested 
in the study, GRVI appeared to be the most sensitive to thrips (Thrips tabaci Lind) 
damage of cotton.  

In a study of aphid infestation, Kumar et al. (2010) compared the spectral 
reflectance from healthy and infested canopies of mustard using field as well as 
laboratory spectroscopy. Results showed that spectral indices NDVI, RVI, AI and 
SIPI (Table 1) were significantly correlated with aphid infestation and these indices 
could be used for identifying aphid infestation in mustard. Yang et al. (2005) 
conducted a greenhouse study to characterized greenbug (Schizaphis graminum 
Rondani) stress in wheat. They found that a waveband centered at 694 nm and 
spectral vegetation indices derived from wavelengths centered at 800 nm and 694 nm 
were most sensitive to greenbug-damaged wheat. Riedell and Blackmer (1999) used a 
handheld radiometer in greenhouse to characterize leaf reflectance spectra of wheat 
stressed by Russian wheat aphid (Diuraphis noxia Mordvilko). They concluded that 
leaf reflectance in the 625–635 nm and 680–695 nm ranges, as well as the normalized 
total pigment to chlorophyll a ratio index (NPCI - Table 1) were good indicators of 
chlorophyll loss caused by aphid feeding. Russian wheat aphid was taken into 
account in the study conducted by Mirik et al. (2007), who tested the relationship 
between four vegetation indices (AI, NDVI, SIPI, DSSI) and aphid abundance. In that 
study the only consistent and statistically significant relationships were found 
between Russian wheat aphid abundance and AI for all fields (Mirik et al. 2007) . The 
superiority of AI over NDVI, SIPI, DSSI in detection of aphid abundance indicate 
that invention of new spectral indices may create the potential to improve pest 
detection with the use of remote sensing. However one should be aware that 
detection of pest abundance with remote sensing methods should be supported by 
field inspection.  

An example of the use of spectral measurements for identification of a plant 
disease is presented by Ashourloo et al. (2014), who investigated the use of 
vegetation indices derived from data obtained with a hyperspectral radiometer for 
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detecting infections of wheat leaf Rust (Pucciniatriticina). The authors developed two 
indices: Leaf Rust Disease Severity Index 1 and 2 (LRDSI1 and LRDSI2 - Table 1) 
based on the reflectance in the 605, 695 and 455 nm wavelengths and both indices 
had high R2 with the disease severity (0.94 and 0.95, respectively). 

Zhang et al. (2003), detected the presence of Phytophthora infestans in tomatoes 
using reflectance.  The study showed that the near infrared (NIR) region, especially 
700 – 1300 nm, was much more useful than the VIS range to detect disease symptoms 
caused by P. infestans. The difference of spectral reflectance in VIS range between 
healthy and infected plants was only 1.19%, while the difference in the NIR region 
was higher then 10%. Similar results were obtained by Baranowski et al. (2015) who 
elaborated a hyperspectral method of early detection of biotic stresses caused by 
Alternaria alternate, a pathogen of oilseed rape (Brassica napus L.). The greatest 
spectral differences between the infected and uninfected parts of oilseed rape leaves 
were observed in the SWIR region between the water absorption bands (1470 and 
1900 nm). 

AIRBORNE REMOTE SENSING 
When using airborne imagery to detect infested plants in agricultural crops it is 

important to select a sensor with appropriate spectral and spatial resolution. Mewes 
(2010) compared the effectiveness of the identification of wheat plants infected with 
brown rust??? (Puccinia recondita f. sp. tritici) with two hyperspectral cameras, one of 
which (AISA-DUAL, Specim LTD, Oulu, Finland) recorded the reflected radiation in 
the 498 channels in the range of 400 - 2500 nm with a spectral resolution of 2.5 - 5.8 
nm and the second (ROSIS, German Space Agency, DLR) in the 115 channels in the 
range of 383 - 839 nm with a spectral resolution of 5 nm. The accuracy with which 
healthy and infested plants were identified in the AISA-DUAL images was higher 
than in the ROSIS images (respectively 84.32% and 80.33%), and was associated with 
stronger correlations at longer NIR wavelengths. AISA images were recorded from a 
lower altitude than ROSIS images (2300 m and 2880 m, respectively) what resulted in 
higher spatial resolution (1.5 m and 2.0 m, respectively) and stronger AISA signal 
intensity due to lower atmospheric absorption and scattering of the signal reflected 
from the field surface. Both sensors had the same Signal to Noise Ratio (>500:1) and 
images were taken almost at the same time, thus obtained imagery data could be 
directly compared 

Glaser et al. (2009) accurately identified maize plots infested by corn rootworm 
(Diabrotica virgifera) using hyperspectral images acquired with spatial resolutions 
from 0.5 to 2.0 meters. The classification accuracies for identification of insect infested 
plots were up to 99% and were greater in the case of images recorded later in the 
season. The maximum separability between infested and un-infested maize, was 
derived using SR index (Table 1) calculated as ratio of two bands in VIS (648 nm) and 
NIR (747 nm) wavelengths. Spatial resolution of the image data is a key factor in the 
detection of the plant diseases and pest. Better results can be achieved using UAV, 
which provides higher resolution images compared to piloted aircraft platforms. 
Garcia-Ruiz et al. (2013) compared the effectiveness of citrus greening disease 
(caused by motile bacteria Candidatus Liberibacter spp) detection using an UAV-
based sensor with a similar imaging system mounted on a piloted aircraft with 
spatial resolutions of 5.45 cm/pixel and 0.5 m/pixel, respectively. Classification 
accuracy of 67–85% achieved based on UAV-based datasets did not differ very much 
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from the results obtained based on aircraft-based datasets of 61–74%. However, 
comparison of false negatives results achieved based on data acquired with the use of 
UAV and aircraft, that is, 7-32 and 28-45 respectively, indicated superiority of the 
first method over the latter.  
 

SATELLITE REMOTE SENSING 
The occurrence of plant diseases and pests in agricultural crops can also be 

observed using satellite images. Apan et al. (2004) demonstrated that Hyperion 
satellite hyperspectral imagery could be used to detect orange rust (Puccinia kuehnii) 
disease in sugarcane. Chen et al. (2007) used Landsat multispectral imagery to 
successfully detect severe infestations of the take-all disease (Gaeumannomyces 
graminis) in wheat. Franke and Menz (2007) evaluated high resolution QuickBird 
satellite multispectral imagery for detecting powdery mildew (Blumeria graminis) and 
leaf rust (Puccinia recondita) in winter wheat. Results demonstrated that multispectral 
images are generally suitable to detect infield heterogeneities in wheat vigor, 
particularly for later stages of fungal infections, but only moderately appropriate for 
distinguishing early infection levels in wheat. 

ASSESSMENT OF WATER DEMANDS OF PLANTS  

GROUND-BASED REMOTE SENSING 
Another example illustrating the possibilities of spectral measurements carried 

out at the ground level is the development of spectral indices for determining the 
water demands of plants. For this purpose TIR remote sensing can be used 
(Taghvaeian et al. 2013). Since the temperature of a plant canopy depends on the 
degree of heat stress and water supply, it is possible to determine the current status 
of plant water supply using thermal data. Depending on water availability, plants 
showing symptoms of wilting emit more longwave infrared radiation. In order to 
compare the thermal data in time and space, the CWSI index was developed. It was 
obtained by normalizing the canopy temperature using the minimum and maximum 
differences between the plant canopy temperatures and air temperatures. Remotely 
sensed data can also be applied to determine the start date of crop irrigation as 
demonstrated by Mogensen et al. (1996), who used spectral measurements for the 
control of oilseed rape plantation. The study showed a strong relationship between 
the Relative Reflectance Index (RRI – Table 1) and water content in the soil. RRI index 
calculated as the ratio of the reflectance index of the withered crops to that of the 
fully irrigated reference crop allows to determine the optimal start date of irrigation. 

AIRBORNE REMOTE SENSING 
From airborne data Champagne et al., (2003) directly estimated the canopy 

equivalent water thickness (EWT), which is the weight of water per unit area of leaf. 
There is a close relationship between EWT and biomass of plants and their LAI, 
which are important variables in many agriculture applications. The model built by 
the authors, describing the relationship between EWT and hyperspectral airborne 
imagery data, proved to be a good predictor for broadleaf crops like beans, corn, 
canola and peas while for wheat provided poor predictions. 

Another measure of plant water content, which can be estimated on the basis of 
airborne images, is canopy water content (CWC) determined as the total amount of 
foliage water per unit ground area. Plant water potential and relative water content 
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are closely related to CWC but the latter measure is easier to estimate through optical 
remote sensing (Hunt et al., 2013). Various methods have been developed to estimate 
CWC from remotely sensed data, such as the NDWI and the NDII indices (Table -1) 
(Cheng et al., 2013; Colombo et al., 2008). Cheng et al. (2014) studied the daily and 
seasonal variation of CWC in nut tree orchards applying continuous wavelet analysis 
to the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data acquired in 
224 bands from 365 to 2500 nm at a spectral resolution of 10 nm. The authors found 
that CWC is strongly correlated to three wavelet features at 1100 nm, 167 nm and 
2180 nm wavelengths and their combination provided the best wavelet model and 
predicted CWC with a R2 of 0.84.  

UAV platforms have proved to be very useful for water irrigation management. 
The possibility of flight at low altitude allows for acquiring thermal images with high 
spatial resolution and thus eliminating the soil background effect. Gago et al. (2013) 
using thermal image pixel resolution of 2.5 cm obtained R2=0.86 for the relationship 
between CWSI index (Table 1) and plant water status in vineyards a significant 
improvement in water stress assessment published compared to previous papers 
(Baluja et al. 2012). 

SATELLITE REMOTE SENSING 
Many studies have shown that accurate estimates of water content in plants can 

also be obtained from the satellite level. Gao (1996) estimated plant liquid water 
using the NDWI (Table 1) calculated from a combination of two water absorption 
bands from the MODIS satellite sensor centered at 860 nm and 1240 nm. Another 
index, SIWSI using water absorption features at 858 nm and 1640 nm was applied by 
Fensholt and Sandholt (2003) to monitor spatial and temporal changes in vegetative  
water content in rice paddy fields (Oryza sativa L.) in China. 

Satellite images are particularly useful to estimate vegetation water content over 
vast agricultural areas and can support effective water management, providing 
information on the total evaporative water demand for crops. El-Magd and Tanton 
(2003) directly calculated ET, using Landsat ETM satellite data and a modified 
sensible heat flux approach. This method is useful for assessing crop water 
requirements and can be used to determine water use efficiency. 

 

WEED CONTROL 

GROUND-BASED REMOTE SENSING 
Intensive studies have been conducted on the use of handheld radiometers in 

weed control in agricultural crops. Weed control with remote sensing involves 
identification of the weed species or weed distinction from crop plants. Such 
distinction of weeds from crops is less complicated than the identification of weed 
species, but it suffices to apply herbicide precisely on weed plants. For detection of 
weeds in agricultural crops various vision systems have been used (Slaughter et al. 
2007). Systems used in agricultural practice based on optical sensors (photodiodes), 
such as the Weedseeker (Trimble Navigation Ltd., Westminster, USA), can 
distinguish the plant from the soil. Nonetheless, distinguishing weeds from crop 
plants is more difficult. Greater efficiency in distinguishing weeds from crop plants 
as well as their identification is being evaluated via machine vision, which utilizes 
optics, electronics, mechanics, computer science and image analysis. In this 
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technology, automatic discriminant analysis is conducted on the basis of information 
about color and its saturation, shape and texture of plants, allowing one to classify 
weed and crop plants. Burks et al. (2000, 2002, 2005) demonstrated that the accuracy 
of this method was very high, varying from 80 to 97%. The combination of the 
information about the size, shape and color of plants allowed the identification of 
volunteer potatoes in corn and sugar beet crops (Nieuwenhuizen et al. 2007, Van 
Evert et al. 2006), as well as the distinction of weeds from corn plants (Shrestha and 
Steward 2005).  

AIRBORNE REMOTE SENSING 
Of all applications of airborne remote sensing in pest management, weed 

detection seems to be the most successful. For example, Lamb et al. (1999), using 
hyper-spectral radiance data from an airborne sensor demonstrated detection of 
weeds in a seedling stage of a triticale crop and Deguise et al. (1999) successfully 
mapped weed patches in a canola (Brassica napus L.) field. Interesting information 
about detecting weed infestations with the help of multi–spectral airborne remote 
sensors is provided also by Goel et al. (2001) who stated that that the spectral bands 
centered at 675.98 and 685.17 nm in the red region and NIR bands from 743.93 to 
830.43 nm have good potential for discriminating between weed–free and weed–
infested areas in corn. Peña et al. (2015) studied the possibility of using UAVs to 
optimize the application of herbicides on the basis of aerial images. Owing to very 
low altitudes (40 m) and high spatial resolution aerial imagery weeds were detected 
with an accuracy of up to 91%, 50 days after sowing. 

SATELLITE REMOTE SENSING 
Recognition of weed seedlings using high-resolution multispectral satellites such 

as QuickBird and GeoEye with ground resolutions of 2.44 and 1.64 m, respectively 
shows promise. Using QuickBird imagery detailed maps of Cirsium arvense 
distribution in sugar beets during the cotyledon stage were prepared (Backes and 
Jacobi 2006). However, moderate resolution satellites like SPOT (20 m) or Landsat 
TM (30 m) and low resolution NOAA-AVHRR (1100 m) have proved to be useful on 
a broad scale for the detection and mapping of large clusters of weeds due to 
differences between spectral properties of weeds and their background (Anderson et 
al. 1993, Ullah et al. 1989, Peters et al.1992). 

CONCLUSIONS 

The examples described above, in many cases relate to the use of remote sensing 
in precision agriculture, which has been developing rapidly in recent years. The main 
purpose of this farm management method is to optimize returns on inputs, while 
ensuring environmental stewardship. Highly advanced technologies used in 
precision agriculture require constant access to detailed information characterizing 
the environmental conditions under which this production takes place. Such 
information may be obtained from airborne and satellite images at the field scale. 

Data collected from satellite, airborne and ground levels facilitate monitoring 
weed infestations, damages caused by pests and plant pathogens, thereby making it 
possible to counteract quickly. The ability to use remote sensing data to determine 
fertilization needs of plants based on the nutrient content of crops and soils helps to 
increase yields and improve the quality of harvested seeds and fruits, which is 
important for improving the crop profitability. Accurate determination of the 
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nutritional requirements of plants at critical stages during the field season  helps to 
optimize fertilization as well as reduce potential  adverse impacts associated with 
offsite transport of agrochemicals. Remote sensing has also been used to assess the 
water needs of plants and determine the date of commencement of irrigation, making 
it easier to manage crop production under conditions of water stress. 

However, two major problems must be solved in order to develop quantitative 
applications of remote sensing for crop management. The first problem which needs 
to be dealt with is variation in reflectance caused by solar illumination angles, sensor 
viewing direction, or plant row orientation.  The second problem concerns stress 
detection algorithms that perform reliably across space and time and capable of 
discerning water-, nutrient-, and pest-induced stress signals from “noise” introduced 
by soil and non-photosynthetically active plant material (Pinter et al., 2003). Newer 
techniques, such as spectral mixing analysis, may be used for these purposes. 
Recently, Planet Labs company launched into space a fleet of 28 small observing 
satellites with dimensions of tens of centimeters. The satellites can provide images of 
agricultural fields at an exceptional combination of resolution and frequency. 

Another trend accompanying the development of remote sensing is the 
integration of remotely sensed parameters with decision support systems. 
Combining remotely acquired data with existing crop simulation models will 
improve reliability of decision support systems and will contribute to modernized 
agricultural production management 
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