## Mathematical statistics

Normal distribution

## Normal Distribution - ND

The normal distribution is the most important probability distribution in statistics because it fits many natural phenomena. It is also known as the Gaussian distribution and the bell curve.

It is a symmetric distribution where most of the observations cluster around the central peak and the probabilities for values further away from the mean taper off equally in both directions. Extreme values in both tails of the distribution are similarly unlikely.

## Normal Distribution - ND

Many things closely follow a normal distribution: heights of people, size of things produced by machine, errors in measurements, blood pressure, marks on a test etc.

## Normal Distribution - ND

The normal distribution has two parameters, the mean $\mu$ and standard deviation $\sigma$. The shape of random variable distribution changes based on the parameter values. The mean is the central tendency of the distribution. It defines the location of the peak for normal distributions. Most values cluster around the mean. The standard deviation is a measure of variability. It defines the width of the normal distribution. The standard deviation determines how far away from the mean the values tend to fall. It represents the typical distance between the observations and the average.

A random variable $X$ has a normal distribution with parameters $\mu$ and $\sigma$

$$
X \sim N\left(\mu, \sigma^{2}\right),
$$

if the density function:

$$
f(x)=\frac{1}{\sim \pi} e^{-\frac{(x-m)^{2}}{2 \sigma^{2}}},-\infty<x<\infty, \sigma>0
$$

## ND, expected value and

 variance$$
\begin{gathered}
F(x)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{(t-m)^{2}}{2 \sigma^{2}}} d t \\
E(x)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} x e^{-\frac{(x-m)^{2}}{2 \sigma^{2}}} d x=m \\
D^{2}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{x}(x-m)^{2} e^{-\frac{(x-m)^{2}}{2 \sigma^{2}}} d x=\sigma^{2}
\end{gathered}
$$



## Standard Normal Distribution


https://www.mathsisfun.com/data/standard-normal-distribution.html

## 3 sigma rule



## Standard normal distribution $X \sim N(0,1)$

Standard normal distribution is characterized by $\mu=0$ and $\sigma=1$.



https://en.wikipedia.org/wiki/Probability_distribution\#/media/File:Combined_Cumulative_Distribution_Graphs.png

In statistics, the standard score is the number of standard deviations by which the value of a raw score (i.e., an observed value or data point) is above or below the mean value of what is being observed or measured. Raw scores above the mean have positive standard scores, while those below the mean have negative standard scores.

It is calculated by subtracting the population mean from an individual raw score and then dividing the difference by the population standard deviation. This process of converting a raw score into a standard score is called standardizing.

Standard scores are most commonly called Z-scores; the two terms may be used interchangeably. Other terms include Z-values, normal scores, and standardized variables.

Computing a $Z$-score requires knowing the mean and standard deviation of the complete population to which a data point belongs.

## Standard normal distribution $X \sim N(0,1)$

If the population mean and population standard deviation are known, a raw score $x$ is converted into a standard score by[1]
$Z=\frac{X-\mu}{\sigma}$
where:
$\mu$ is the mean of the population.
$\sigma$ is the standard deviation of the population.
Calculating z using this formula requires the population mean and the population standard deviation, not the sample mean or sample deviation.

The absolute value of $Z$ represents the distance between that raw score $X$ and the population mean in units of the standard deviation. $Z$ is negative when the raw score is below the mean, positive when above.

## Example:

In a population of 60 year old males in whom BMI was normally distributed and had a mean value 29 and a standard deviation 6, what is the probability that a randomly selected male from this population would have a BMI less than 30.

Calculations:
How many standard deviation it is away from the mean:

$$
Z=\frac{30-29}{6}=0.17
$$

| $\mathbf{x}$ | 0,00 | 0,01 | 0,02 | 0,03 | 0,04 | 0,05 | 0,06 | 0,07 | 0,08 | 0,09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0,0 | 0,50000 | 0,50399 | 0,50798 | 0,51197 | 0,51595 | 0,51994 | 0,52392 | 0,52790 | 0,53188 | 0,53586 |
| 0, | 0,53983 | 0,54380 | 0,54776 | 0,55172 | 0,55567 | 0,55962 | 0,56356 | 0,56749 | 0,57142 | 0,57535 |
| 0,2 | 0,57926 | 0,58317 | 0,58706 | 0,59095 | 0,59483 | 0,59871 | 0,60257 | 0,60642 | 0,61026 | 0,61409 |
| 0,3 | 0,61791 | 0,62172 | 0,62552 | 0,62930 | 0,63307 | 0,63683 | 0,64058 | 0,64431 | 0,64803 | 0,65173 |
| 0, | 0,65542 | 0,65910 | 0,66276 | 0,66640 | 0,67003 | 0,6736 | 0,67724 | 0,68082 | 0,68439 | 0,68793 |
| 0, | 0,69146 | 0,6949 | 0,69847 | 0,7019 | 0,70540 | 0,70884 | 0,71226 | 0,71566 | 0,71904 | 0,72240 |
| 0,6 | 0,72575 | 0,72907 | 0,73237 | 0,73565 | 0,73891 | 0,74215 | 0,74537 | 0,74857 | 0,75175 | 0,75490 |
| 0,7 | 0,75804 | 0,76115 | 0,76424 | 0,76730 | 0,7703 | 0,7733 | 0,77637 | 0,77935 | 0,78230 | 0,78524 |
| 0,8 | 0,7881 | 0,7910 | 0,7 | 0,7967 | 0,7995 | 0,8023 | 0,80511 | 0,80785 | 0,81057 | 0,81327 |
| 0,9 | 0,81594 | 0,81859 | 0,82121 | 0,82381 | 0,82639 | 0,82894 | 0,83147 | 0,83398 | 0,83646 | 0,83891 |
| 1, | 0,8413 | 0,84375 | 0,84614 | 0,84849 | 0,85083 | 0,85314 | 0,85543 | 0,85769 | 0,85993 | 0,86214 |
| 1, | 0,86433 | 0,8665 | 0,8686 | 0,87076 | 0,8728 | 0,8749 | 0,87698 | 0,87900 | 0,88100 | 0,88298 |
| 1,2 | 0,88493 | 0,8868 | 0,8887 | 0,8906 | 0,89251 | 0,89435 | 0,89617 | 0,89796 | 0,89973 | 0,90147 |
| 1,3 | 0,90320 | 0,90490 | 0,90658 | 0,90824 | 0,90988 | 0,91149 | 0,91308 | 0,91466 | 0,91621 | 0,91774 |
| 1,4 | 0,91924 | 0,92073 | 0,92220 | 0,92364 | 0,92507 | 0,92647 | 0,92785 | 0,92922 | 0,93056 | 0,93189 |
| 1,5 | 0,93319 | 0,93448 | 0,9357 | 0,9369 | 0,9382 | 0,93943 | 0,94062 | 0,94179 | 0,94295 | 0,94408 |
| 1,6 | 0,94520 | 0,94630 | 0,94738 | 0,94845 | 0,94950 | 0,95053 | 0,95154 | 0,95254 | 0,95352 | 0,95449 |
| 1,7 | 0,95543 | 0,95637 | 0,95728 | 0,95818 | 0,95907 | 0,95994 | 0,96080 | 0,96164 | 0,96246 | 0,96327 |
| 1,8 | 0,96407 | 0,96485 | 0,96562 | 0,96638 | 0,96712 | 0,96784 | 0,96856 | 0,96926 | 0,96995 | 0,97062 |
| 1,9 | 0,97128 | 0,97193 | 0,97257 | 0,97320 | 0,97381 | 0,97441 | 0,97500 | 0,97558 | 0,97615 | 0,97670 |
| 2,0 | 0,97725 | 0,97778 | 0,97831 | 0,97882 | 0,97932 | 0,97982 | 0,98030 | 0,98077 | 0,98124 | 0,98169 |
| 2,1 | 0,98214 | 0,98257 | 0,98300 | 0,98341 | 0,98382 | 0,98422 | 0,98461 | 0,98500 | 0,98537 | 0,98574 |
| 2,2 | 0,98610 | 0,98645 | 0,98679 | 0,98713 | 0,98745 | 0,98778 | 0,98809 | 0,98840 | 0,98870 | 0,98899 |
| 2,3 | 0,98928 | 0,98956 | 0,98983 | 0,99010 | 0,99036 | 0,99061 | 0,99086 | 0,99111 | 0,99134 | 0,99158 |
| 2,4 | 0,99180 | 0,99202 | 0,99224 | 0,99245 | 0,99266 | 0,99286 | 0,99305 | 0,99324 | 0,99343 | 0,99361 |
| 2,5 | 0,99379 | 0,99396 | 0,99413 | 0,99430 | 0,99446 | 0,99461 | 0,99477 | 0,99492 | 0,99506 | 0,99520 |
| 2,6 | 0,99534 | 0,99547 | 0,99560 | 0,99573 | 0,99585 | 0,99598 | 0,99609 | 0,99621 | 0,99632 | 0,99643 |

## ND example

The weight of the orange is a normally distributed random variable with an average of 195.6 g and a variance of 16.3 . Calculate the probability that at least one of the four randomly selected fruits will weigh over 200 g .

## A population, a sample

We want to know about these


We have these to work with


## A population, a sample



## The likelihood function

The likelihood function measures the goodness of fit of a statistical model to a sample of data for given values of the unknown parameters. It is formed from the joint probability distribution of the sample, but viewed and used as a function of the parameters only, thus treating the random variables as fixed at the observed values. In the estimation process, based on the sample $x_{1}, x_{2}, \ldots, x_{n}$ the parameters describing the assumed probability distribution can be determined. In the estimation process, the parameters should be selected to maximize the probability of the sample used to determine them. The likelihood function can be called the probability product for $n$ available samples. Maximum likelihood estimation is a method of estimating the parameters of a probability distribution by maximizing a likelihood function, so that under the assumed statistical model the observed data is most probable.

## The likelihood function

For n independent observations $x_{1} \ldots x_{n}$ with the distribution given by the density function $p_{\theta}$ depending on the unknown parameter $\theta$ the function:

$$
\begin{aligned}
& L\left(x_{1}, \ldots, x_{n}, \theta\right)=p_{\theta}\left(x_{1}\right) \cdot p_{\theta}\left(x_{2}\right) \ldots \cdot p_{\theta}\left(x_{n}\right) \\
& \quad l=\ln (L)=\ln \left(\sum_{i=1}^{n} p_{\theta}\left(x_{1}\right)\right)=\sum_{i=1}^{n} \ln p_{\theta}\left(x_{i}\right)
\end{aligned}
$$

this is the likelihood function.
The parameter $\theta$ is assumed to be for which the likelihood function reaches the highest value.

## The likelihood function

Let $x_{1} \ldots x_{n}$ be variables derived from the normal distribution $N\left(\mu, \sigma^{2}\right)$ then:

$$
\begin{aligned}
& L\left(x_{1}, \ldots, x_{n}, \mu, \sigma\right) \\
& =\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{\left(x_{1}-\mu\right)^{2}}{2 \sigma^{2}}} \cdot \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{\left(x_{2}-\mu\right)^{2}}{2 \sigma^{2}}} \cdots \cdots \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{\left(x_{n}-\mu\right)^{2}}{2 \sigma^{2}}}
\end{aligned}
$$

$$
L\left(x_{1}, \ldots, x_{n}, \mu, \sigma\right)=\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} e^{\left[\sum_{i=1}^{n}\left(-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right)\right]}
$$

$$
\ln L\left(x_{1}, \ldots, x_{n}, \mu, \sigma\right)=\ln \left[\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} e^{\left[\sum_{i=1}^{n}\left(-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right)\right]}\right]
$$

## The likelihood function

$$
\begin{gathered}
\ln (x \cdot y)=\ln x+\ln y \\
\ln L\left(x_{1}, \ldots, x_{n}, \mu, \sigma\right)=\ln \left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n}+\ln e^{\left[\sum_{i=1}^{n}\left(-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right)\right]} \\
\ln e^{x}=x \\
\ln L\left(x_{1}, \ldots, x_{n}, \mu, \sigma\right)=\ln (\sigma \sqrt{2 \pi})^{-n}+\sum_{i=1}^{n}\left(-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right)
\end{gathered}
$$

a function reaches a minimum when its derivative is zero

## The likelihood function

$$
\begin{gathered}
\ln L\left(x_{1}, \ldots, x_{n}, \mu, \sigma\right)=\ln (\sigma \sqrt{2 \pi})^{-n}+\sum_{i=1}^{n}\left(-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right) \\
\frac{d\left(-n \ln (\sigma \sqrt{2 \pi})+\frac{-1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(\left(x_{i}-\mu\right)^{2}\right)\right)}{d \mu}=0 \\
\frac{d\left[\sum_{i=1}^{n}\left(\left(x_{i}-\mu\right)^{2}\right)\right]}{d \mu}=0 \\
\frac{d\left(\sum_{i=1}^{n} x_{i}^{2}-2 \mu \sum_{i=1}^{n} x_{i}+\sum_{i=1}^{n} \mu^{2}\right)}{d \mu}=0
\end{gathered}
$$

## The likelihood function

$$
\begin{gathered}
\frac{d\left(\sum_{i=1}^{n} x_{i}^{2}-2 \mu \sum_{i=1}^{n} x_{i}+n \mu^{2}\right)}{d \mu}=0 \\
0-2 \sum_{i=1}^{n} x_{i}+n 2 \mu=0 \\
n \mu=\sum_{i=1}^{n} x_{i}
\end{gathered}
$$

$\mu$ estimator is:

$$
\mu=\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

## The likelihood function

$$
\begin{gathered}
\ln L\left(x_{1}, \ldots, x_{n}, \mu, \sigma\right)=\ln \left(\sqrt{2 \pi \sigma^{2}}\right)^{-n}+\sum_{i=1}^{n}\left(-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right) \\
\frac{d\left(-n \ln \left(2 \pi \sigma^{2}\right)^{\frac{1}{2}}+\frac{-1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(\left(x_{i}-\mu\right)^{2}\right)\right)}{d \sigma^{2}}=0 \\
\frac{d\left(-\frac{1}{2} n \ln \sigma^{2}-\frac{1}{2} n \ln (\sqrt{2 \pi})+\frac{-1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(\left(x_{i}-\mu\right)^{2}\right)\right)}{d \sigma^{2}}=0 \\
-\frac{n}{2} \frac{1}{\sigma^{2}}+\frac{1}{2} \frac{1}{\sigma^{4}} \sum_{i=1}^{n}\left(\left(x_{i}-\mu\right)^{2}\right)=0
\end{gathered}
$$

## The likelihood function

$$
-n+\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(\left(x_{i}-\mu\right)^{2}\right)=0
$$

Estymator of $\sigma^{2}$ is:

$$
\sigma^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}{n}
$$

## Confidence intervals

## Confidence Intervals - CI

- Estimation is the estimation of values such as the mean, standard deviation, variance, fractions for the entire population based on a sample.
- Estimation allows for the generalization of the collected results from the sample to the entire population.

Point estimation
$\mu$ estimator is:

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

Estymator of $\sigma^{2}$ is:

$$
s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}{n-1}
$$

fraction (percentage of the population that meets the given condition)
k - number of favorable events
n - number of all events

$$
\bar{p}=\frac{k}{n}
$$

- The confidence interval for a given statistical measure informs that the real value sought is within a certain interval with the assumed probability.

Example for the mean:

- tests on a sample provide an average value of a certain feature, on its basis, it is possible to determine a confidence interval in which the value of the average for the entire population falls with the assumed probability

Useful continuous distributions:
t-Student distribution
chi square distribution

## T-Student's


http://en.wikipedia.org/wiki/Student\'s_t-distribution\#mediaviewer/File:Student_t_pdf.svg

Distribution $\chi 2$ (chi square) - distribution of a random variable, which is the sum of $k$ squares of independent random variables with a standard normal distribution. A natural number k is called the number of degrees of freedom in the distribution of a random variable.

$$
\begin{array}{ccc}
k=1 & X^{2} & X \sim N(0,1) \\
k=2 & X_{1}^{2}+X_{2}^{2} & X \sim N(0,1) \\
k=3 & X_{1}^{2}+X_{2}^{2}+X_{3}^{2} & X \sim N(0,1)
\end{array}
$$



## Confidence interval $\mu$

- $\mathrm{X} \sim \mathrm{N}\left(\mu, \sigma^{2}\right), \mu, \sigma^{2}$ unknown

$$
\mu \epsilon\left\langle\bar{x}-t_{\alpha, v} \frac{s}{\sqrt{n}} ; \bar{x}+t_{\alpha, v} \frac{s}{\sqrt{n}}\right\rangle
$$

## Confidence interval $\sigma^{2}$

- $\mathrm{X} \sim \mathrm{N}\left(\mu, \sigma^{2}\right), \mu, \sigma^{2}$ unknown

$$
\sigma^{2} \in\left\langle\frac{s^{2}(n-1)}{\chi_{\frac{\alpha}{2}, v}^{2}} ; \frac{s^{2}(n-1)}{\chi_{1-\frac{\alpha}{2}, v}^{2}}\right\rangle
$$

## Confidence interval p

- $\mathrm{X} \sim \mathrm{B}(\mathrm{n}, \mathrm{p}), \mathrm{p}$ unknown

$$
p \in\left\langle\bar{p}-z_{1-\frac{\alpha}{2}} \sqrt{\frac{\bar{p}(1-\bar{p}}{n}} ; \bar{p}+z_{1-\frac{\alpha}{2}} \sqrt{\left.\frac{\bar{p}(1-\bar{p}}{n}\right\rangle}\right.
$$

## Confidence interval for

 difference of means$\mu_{1}-\mu_{2} \in\left\langle\left(\bar{x}_{1}-\bar{x}_{2}\right)-t_{\alpha, v} \cdot s_{r} ;\left(\bar{x}_{1}-\bar{x}_{2}\right)+t_{\alpha, v} \cdot s_{r}\right\rangle$

$$
s_{r}=\sqrt{s_{e}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}
$$

$$
s_{e}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}
$$

## Student's t Distribution Table

For example, the t value for 18 degrees of freedom is 2.101 for $95 \%$ confidence interval ( $\mathbf{2}$-Tail $\alpha=0.05$ ).


|  | 90\% | 95\% | 97.5\% | 99\% | 99.5\% | 99.95\% | 1-Tail Confidence Level |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 80\% | 90\% | 95\% | 98\% | 99\% | 99.9\% | 2-Tail Confidence Level |
|  | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.0005 | 1-Tail Alpha |
| $d f$ | 0.20 | 0.10 | 0.05 | 0.02 | 0.01 | 0.001 | 2-Tail Alpha |
| 1 | 3.0777 | 6.3138 | 12.7062 | 31.8205 | 63.6567 | 636.6192 |  |
| 2 | 1.8856 | 2.9200 | 4.3027 | 6.9646 | 9.9248 | 31.5991 |  |
| 3 | 1.6377 | 2.3534 | 3.1824 | 4.5407 | 5.8409 | 12.9240 |  |
| 4 | 1.5332 | 2.1318 | 2.7764 | 3.7469 | 4.6041 | 8.6103 |  |
| 5 | 1.4759 | 2.0150 | 2.5706 | 3.3649 | 4.0321 | 6.8688 |  |
| 6 | 1.4398 | 1.9432 | 2.4469 | 3.1427 | 3.7074 | 5.9588 |  |
| 7 | 1.4149 | 1.8946 | 2.3646 | 2.9980 | 3.4995 | 5.4079 |  |
| 8 | 1.3968 | 1.8595 | 2.3060 | 2.8965 | 3.3554 | 5.0413 |  |
| 9 | 1.3830 | 1.8331 | 2.2622 | 2.8214 | 3.2498 | 4.7809 |  |
| 10 | 1.3722 | 1.8125 | 2.2281 | 2.7638 | 3.1693 | 4.5869 |  |
| 11 | 1.3634 | 1.7959 | 2.2010 | 2.7181 | 3.1058 | 4.4370 |  |
| 12 | 1.3562 | 1.7823 | 2.1788 | 2.6810 | 3.0545 | 4.3178 |  |
| 13 | 1.3502 | 1.7709 | 2.1604 | 2.6503 | 3.0123 | 4.2208 |  |
| 14 | 1.3450 | 1.7613 | 2.1448 | 2.6245 | 2.9768 | 4.1405 |  |
| 15 | 1.3406 | 1.7531 | 2.1314 | 2.6025 | 2.9467 | 4.0728 |  |
| 16 | 1.3368 | 1.7459 | 2.1199 | 2.5835 | 2.9208 | 4.0150 |  |
| 17 | 1.3334 | 1.7396 | 2.1098 | 2.5669 | 2.8982 | 3.9651 |  |
| 18 | 1.3304 | 1.7341 | 2.1009 | 2.5524 | 2.8784 | 3.9216 | http: / / growin |
| 19 | 1.3277 | 1.7291 | 2.0930 | 2.5395 | 2.8609 | 3.8834 | KStatsBookStu |

## Critical values for $\chi^{2}$

| $\mathbf{v} \backslash \mathbf{a}$ | $\mathbf{0 , 9 9 5}$ | $\mathbf{0 , 9 9 0}$ | $\mathbf{0 , 9 7 5}$ | $\mathbf{0 , 9 5 0}$ | $\mathbf{0 , 9 0 0}$ | $\mathbf{0 , 1 0 0}$ | $\mathbf{0 , 0 5 0}$ | $\mathbf{0 , 0 2 5}$ | $\mathbf{0 , 0 1 0}$ | $\mathbf{0 , 0 0 5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | $0,0^{4} 393$ | 0,0002 | 0,0010 | 0,0039 | 0,0158 | 2,7055 | 3,8415 | 5,0239 | 6,6349 | 7,8794 |
| $\mathbf{2}$ | 0,0100 | 0,0201 | 0,0506 | 0,1026 | 0,2107 | 4,6052 | 5,9915 | 7,3778 | 9,2104 | 10,5965 |
| $\mathbf{3}$ | 0,0717 | 0,1148 | 0,2158 | 0,3518 | 0,5844 | 6,2514 | 7,8147 | 9,3484 | 11,3449 | 12,8381 |
| $\mathbf{4}$ | 0,2070 | 0,2971 | 0,4844 | 0,7107 | 1,0636 | 7,7794 | 9,4877 | 11,1433 | 13,2767 | 14,8602 |
| $\mathbf{5}$ | 0,4118 | 0,5543 | 0,8312 | 1,1455 | 1,6103 | 9,2363 | 11,0705 | 12,8325 | 15,0863 | 16,7496 |
| $\mathbf{6}$ | 0,6757 | 0,8721 | 1,2373 | 1,6354 | 2,2041 | 10,6446 | 12,5916 | 14,4494 | 16,8119 | 18,5475 |
| $\mathbf{7}$ | 0,9893 | 1,2390 | 1,6899 | 2,1673 | 2,8331 | 12,0170 | 14,0671 | 16,0128 | 18,4753 | 20,2777 |
| $\mathbf{8}$ | 1,3444 | 1,6465 | 2,1797 | 2,7326 | 3,4895 | 13,3616 | 15,5073 | 17,5345 | 20,0902 | 21,9549 |
| $\mathbf{9}$ | 1,7349 | 2,0879 | 2,7004 | 3,3251 | 4,1682 | 14,6837 | 16,9190 | 19,0228 | 21,6660 | 23,5893 |
| $\mathbf{1 0}$ | 2,1558 | 2,5582 | 3,2470 | 3,9403 | 4,8652 | 15,9872 | 18,3070 | 20,4832 | 23,2093 | 25,1881 |
| $\mathbf{1 1}$ | 2,6032 | 3,0535 | 3,8157 | 4,5748 | 5,5778 | 17,2750 | 19,6752 | 21,9200 | 24,7250 | 26,7569 |
| $\mathbf{1 2}$ | 3,0738 | 3,5706 | 4,4038 | 5,2260 | 6,3038 | 18,5493 | 21,0261 | 23,3367 | 26,2170 | 28,2997 |
| $\mathbf{1 3}$ | 3,5650 | 4,1069 | 5,0087 | 5,8919 | 7,0415 | 19,8119 | 22,3620 | 24,7356 | 27,6882 | 29,8193 |
| $\mathbf{1 4}$ | 4,0747 | 4,6604 | 5,6287 | 6,5706 | 7,7895 | 21,0641 | 23,6848 | 26,1189 | 29,1412 | 31,3194 |
| $\mathbf{1 5}$ | 4,6009 | 5,2294 | 6,2621 | 7,2609 | 8,5468 | 22,3071 | 24,9958 | 27,4884 | 30,5780 | 32,8015 |
| $\mathbf{1 6}$ | 5,1422 | 5,8122 | 6,9077 | 7,9616 | 9,3122 | 23,5418 | 26,2962 | 28,8453 | 31,9999 | 34,2671 |

## Cl - example

It can be assumed that the skull length (in mm ) in the population of Tatra chamois has a normal distribution with unknown parameters. Calculations were made for a random sample of 15 skulls and the result was:

$$
\sum_{i} x_{i}=2971.5 \sum_{i} x_{i}^{2}=591888.71
$$

Determine the following characteristics of the studied trait in the population: average score, scoring of variance, standard deviation score, $95 \%$ and $99 \%$ confidence interval for the mean, $95 \%$ and $99 \%$ confidence intervals for the variance, $95 \%$ and $99 \%$ confidence intervals for the standard deviation.

## Cl fraction - example

10,000 butterflies, including 5,433 females, were caught. Give an estimate of the female fraction in the butterfly population:
$95 \%$ and $99 \%$ confidence interval

## Libre Calc

## Critical values

- =T.INV.2T(0.05,14)
- =T.INV.2T(0.01,14)
- =NORM.S.INV(0.95)
=NORM.S.INV(0.99)

