INTEGRALS

The prime function f(x) in the interval a < x < b is any such function F(x),
whose derivative F'(x) is equal to this function.

Two functions that have the same derivative in the same interval can differ by a
constant.

Indefinite integral of the function f(x) after dx:

ff(x)dx

If
J f(x)dx =F(x) + C,

then the function F(x) is called the original function, and C is called the constant

and
F'(x) = f(x).
Constant C:

If the derivative of a function is 3x2, then the function can be x3 + 4 or x3 — 1 or
generally x3 + C.



Calculus formulas:
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Properties of integrals:
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fkf(x)dx = kff(x)dx
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DEFINITE INTEGRAL

If in the interval < a, b > thereis f(x) > 0, then the area bounded by the curve
of the curve y = f(x), a segment of the axis Ox and the linesx = aand x = b is
equal to the definite integral:

jbf(x)dx

If in the interval < a, b > thereis f(x) < 0, then the area bounded by the curve
of the curve y = f(x), a by the segment of the Ox axis and the lines x = a and
x = b is equal to the definite integral:

— jbf(x)dx

If F(x) is a prime function f(x), continuous in the interval < a, b >, i.e.

F'(x) = f(x), then:

b
j F()dx = [FOOIL = FIL = F(b) — F(a)



the difference F(b) — F(a) does not depend on the integration constant C.

Graphic interpretation

http://www.if.pw.edu.pl/~wosinska/am2/matma/calka/calka.HTM

Properties of definite integrals:

e ifa < b < cthere is additivity of the integrals to the integration interval

facf(x)dx = fabf(x)dx + chf(x)dx

e the constant factor can be switched off before the sign of the definite
integral

fbkf(x)dx = kfbf(x)dx



the integral of the sum equals the sum of the integrals
b b b
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Calculating the area under the curve

Calculate the area of the area bounded by the curve of the curve y = x3 + x? —
2x, axle distance Ox and functions x = —2 and x = 2.
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Determine the area of the area bounded by the parabolas graphs f(x) = x2 and

g(x) = 2x — x2.
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We determine the points of intersection of parabolas by solving the equation

2x — x% = x?

2x —2x%> =0
x=0lubx=1
Thus:

jl(z 2x%)d —2]1( 2yt = 2652 - 23| =22 1)—1
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